-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathsklearn.covariance.EmpiricalCovariance.html
621 lines (577 loc) · 49.1 KB
/
sklearn.covariance.EmpiricalCovariance.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta property="og:title" content="sklearn.covariance.EmpiricalCovariance" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/generated/sklearn.covariance.EmpiricalCovariance.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Examples using sklearn.covariance.EmpiricalCovariance: Robust covariance estimation and Mahalanobis distances relevance Robust vs Empirical covariance estimate Shrinkage covariance estimation: Ledo..." />
<meta property="og:image" content="https://scikit-learn/stable/_images/sphx_glr_plot_mahalanobis_distances_thumb.png" />
<meta property="og:image:alt" content="" />
<meta name="description" content="Examples using sklearn.covariance.EmpiricalCovariance: Robust covariance estimation and Mahalanobis distances relevance Robust vs Empirical covariance estimate Shrinkage covariance estimation: Ledo..." />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>sklearn.covariance.EmpiricalCovariance — scikit-learn 1.3.2 documentation</title>
<link rel="canonical" href="http://scikit-learn.org/stable/modules/generated/sklearn.covariance.EmpiricalCovariance.html" />
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="stylesheet" href="../../_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="../../_static/plot_directive.css" type="text/css" />
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Vibur" type="text/css" />
<link rel="stylesheet" href="../../_static/jupyterlite_sphinx.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/js/vendor/jquery-3.6.3.slim.min.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="../../index.html">
<img
class="sk-brand-img"
src="../../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../auto_examples/index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../getting_started.html" >Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../tutorial/index.html" >Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../whats_new/v1.3.html" >What's new</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../glossary.html" >Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../faq.html" >FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../support.html" >Support</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../related_projects.html" >Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../roadmap.html" >Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../governance.html" >Governance</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../about.html" >About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="../../getting_started.html" >Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../tutorial/index.html" >Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../whats_new/v1.3.html" >What's new</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../glossary.html" >Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../faq.html" >FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../support.html" >Support</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../related_projects.html" >Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../roadmap.html" >Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../governance.html" >Governance</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../about.html" >About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="../../search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="sklearn.compose.make_column_selector.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.compose.make_column_selector">Prev</a><a href="../classes.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="API Reference">Up</a>
<a href="sklearn.covariance.EllipticEnvelope.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.covariance.EllipticEnvelope">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 1.3.2</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="../../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li><a class="reference internal" href="#"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.covariance</span></code>.EmpiricalCovariance</a><ul>
<li><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance"><code class="docutils literal notranslate"><span class="pre">EmpiricalCovariance</span></code></a><ul>
<li><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.error_norm"><code class="docutils literal notranslate"><span class="pre">EmpiricalCovariance.error_norm</span></code></a></li>
<li><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.fit"><code class="docutils literal notranslate"><span class="pre">EmpiricalCovariance.fit</span></code></a></li>
<li><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.get_metadata_routing"><code class="docutils literal notranslate"><span class="pre">EmpiricalCovariance.get_metadata_routing</span></code></a></li>
<li><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.get_params"><code class="docutils literal notranslate"><span class="pre">EmpiricalCovariance.get_params</span></code></a></li>
<li><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.get_precision"><code class="docutils literal notranslate"><span class="pre">EmpiricalCovariance.get_precision</span></code></a></li>
<li><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.mahalanobis"><code class="docutils literal notranslate"><span class="pre">EmpiricalCovariance.mahalanobis</span></code></a></li>
<li><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.score"><code class="docutils literal notranslate"><span class="pre">EmpiricalCovariance.score</span></code></a></li>
<li><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.set_params"><code class="docutils literal notranslate"><span class="pre">EmpiricalCovariance.set_params</span></code></a></li>
<li><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.set_score_request"><code class="docutils literal notranslate"><span class="pre">EmpiricalCovariance.set_score_request</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#examples-using-sklearn-covariance-empiricalcovariance">Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.covariance.EmpiricalCovariance</span></code></a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<section id="sklearn-covariance-empiricalcovariance">
<h1><a class="reference internal" href="../classes.html#module-sklearn.covariance" title="sklearn.covariance"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.covariance</span></code></a>.EmpiricalCovariance<a class="headerlink" href="#sklearn-covariance-empiricalcovariance" title="Permalink to this heading">¶</a></h1>
<dl class="py class">
<dt class="sig sig-object py" id="sklearn.covariance.EmpiricalCovariance">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sklearn.covariance.</span></span><span class="sig-name descname"><span class="pre">EmpiricalCovariance</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">store_precision</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">assume_centered</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/covariance/_empirical_covariance.py#L109"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.covariance.EmpiricalCovariance" title="Permalink to this definition">¶</a></dt>
<dd><p>Maximum likelihood covariance estimator.</p>
<p>Read more in the <a class="reference internal" href="../covariance.html#covariance"><span class="std std-ref">User Guide</span></a>.</p>
<dl class="field-list">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>store_precision</strong><span class="classifier">bool, default=True</span></dt><dd><p>Specifies if the estimated precision is stored.</p>
</dd>
<dt><strong>assume_centered</strong><span class="classifier">bool, default=False</span></dt><dd><p>If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False (default), data are centered before computation.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Attributes<span class="colon">:</span></dt>
<dd class="field-even"><dl>
<dt><strong>location_</strong><span class="classifier">ndarray of shape (n_features,)</span></dt><dd><p>Estimated location, i.e. the estimated mean.</p>
</dd>
<dt><strong>covariance_</strong><span class="classifier">ndarray of shape (n_features, n_features)</span></dt><dd><p>Estimated covariance matrix</p>
</dd>
<dt><strong>precision_</strong><span class="classifier">ndarray of shape (n_features, n_features)</span></dt><dd><p>Estimated pseudo-inverse matrix.
(stored only if store_precision is True)</p>
</dd>
<dt><strong>n_features_in_</strong><span class="classifier">int</span></dt><dd><p>Number of features seen during <a class="reference internal" href="../../glossary.html#term-fit"><span class="xref std std-term">fit</span></a>.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.24.</span></p>
</div>
</dd>
<dt><strong>feature_names_in_</strong><span class="classifier">ndarray of shape (<code class="docutils literal notranslate"><span class="pre">n_features_in_</span></code>,)</span></dt><dd><p>Names of features seen during <a class="reference internal" href="../../glossary.html#term-fit"><span class="xref std std-term">fit</span></a>. Defined only when <code class="docutils literal notranslate"><span class="pre">X</span></code>
has feature names that are all strings.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.0.</span></p>
</div>
</dd>
</dl>
</dd>
</dl>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<dl class="simple">
<dt><a class="reference internal" href="sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope" title="sklearn.covariance.EllipticEnvelope"><code class="xref py py-obj docutils literal notranslate"><span class="pre">EllipticEnvelope</span></code></a></dt><dd><p>An object for detecting outliers in a Gaussian distributed dataset.</p>
</dd>
<dt><a class="reference internal" href="sklearn.covariance.GraphicalLasso.html#sklearn.covariance.GraphicalLasso" title="sklearn.covariance.GraphicalLasso"><code class="xref py py-obj docutils literal notranslate"><span class="pre">GraphicalLasso</span></code></a></dt><dd><p>Sparse inverse covariance estimation with an l1-penalized estimator.</p>
</dd>
<dt><a class="reference internal" href="sklearn.covariance.LedoitWolf.html#sklearn.covariance.LedoitWolf" title="sklearn.covariance.LedoitWolf"><code class="xref py py-obj docutils literal notranslate"><span class="pre">LedoitWolf</span></code></a></dt><dd><p>LedoitWolf Estimator.</p>
</dd>
<dt><a class="reference internal" href="sklearn.covariance.MinCovDet.html#sklearn.covariance.MinCovDet" title="sklearn.covariance.MinCovDet"><code class="xref py py-obj docutils literal notranslate"><span class="pre">MinCovDet</span></code></a></dt><dd><p>Minimum Covariance Determinant (robust estimator of covariance).</p>
</dd>
<dt><a class="reference internal" href="sklearn.covariance.OAS.html#sklearn.covariance.OAS" title="sklearn.covariance.OAS"><code class="xref py py-obj docutils literal notranslate"><span class="pre">OAS</span></code></a></dt><dd><p>Oracle Approximating Shrinkage Estimator.</p>
</dd>
<dt><a class="reference internal" href="sklearn.covariance.ShrunkCovariance.html#sklearn.covariance.ShrunkCovariance" title="sklearn.covariance.ShrunkCovariance"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ShrunkCovariance</span></code></a></dt><dd><p>Covariance estimator with shrinkage.</p>
</dd>
</dl>
</div>
<p class="rubric">Examples</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.covariance</span> <span class="kn">import</span> <span class="n">EmpiricalCovariance</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">make_gaussian_quantiles</span>
<span class="gp">>>> </span><span class="n">real_cov</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mf">.8</span><span class="p">,</span> <span class="mf">.3</span><span class="p">],</span>
<span class="gp">... </span> <span class="p">[</span><span class="mf">.3</span><span class="p">,</span> <span class="mf">.4</span><span class="p">]])</span>
<span class="gp">>>> </span><span class="n">rng</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="n">rng</span><span class="o">.</span><span class="n">multivariate_normal</span><span class="p">(</span><span class="n">mean</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="gp">... </span> <span class="n">cov</span><span class="o">=</span><span class="n">real_cov</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">size</span><span class="o">=</span><span class="mi">500</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">cov</span> <span class="o">=</span> <span class="n">EmpiricalCovariance</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">cov</span><span class="o">.</span><span class="n">covariance_</span>
<span class="go">array([[0.7569..., 0.2818...],</span>
<span class="go"> [0.2818..., 0.3928...]])</span>
<span class="gp">>>> </span><span class="n">cov</span><span class="o">.</span><span class="n">location_</span>
<span class="go">array([0.0622..., 0.0193...])</span>
</pre></div>
</div>
<p class="rubric">Methods</p>
<table class="autosummary longtable docutils align-default">
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.error_norm" title="sklearn.covariance.EmpiricalCovariance.error_norm"><code class="xref py py-obj docutils literal notranslate"><span class="pre">error_norm</span></code></a>(comp_cov[, norm, scaling, squared])</p></td>
<td><p>Compute the Mean Squared Error between two covariance estimators.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.fit" title="sklearn.covariance.EmpiricalCovariance.fit"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fit</span></code></a>(X[, y])</p></td>
<td><p>Fit the maximum likelihood covariance estimator to X.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.get_metadata_routing" title="sklearn.covariance.EmpiricalCovariance.get_metadata_routing"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_metadata_routing</span></code></a>()</p></td>
<td><p>Get metadata routing of this object.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.get_params" title="sklearn.covariance.EmpiricalCovariance.get_params"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_params</span></code></a>([deep])</p></td>
<td><p>Get parameters for this estimator.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.get_precision" title="sklearn.covariance.EmpiricalCovariance.get_precision"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_precision</span></code></a>()</p></td>
<td><p>Getter for the precision matrix.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.mahalanobis" title="sklearn.covariance.EmpiricalCovariance.mahalanobis"><code class="xref py py-obj docutils literal notranslate"><span class="pre">mahalanobis</span></code></a>(X)</p></td>
<td><p>Compute the squared Mahalanobis distances of given observations.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.score" title="sklearn.covariance.EmpiricalCovariance.score"><code class="xref py py-obj docutils literal notranslate"><span class="pre">score</span></code></a>(X_test[, y])</p></td>
<td><p>Compute the log-likelihood of <code class="docutils literal notranslate"><span class="pre">X_test</span></code> under the estimated Gaussian model.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.set_params" title="sklearn.covariance.EmpiricalCovariance.set_params"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_params</span></code></a>(**params)</p></td>
<td><p>Set the parameters of this estimator.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance.set_score_request" title="sklearn.covariance.EmpiricalCovariance.set_score_request"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_score_request</span></code></a>(*[, X_test])</p></td>
<td><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">score</span></code> method.</p></td>
</tr>
</tbody>
</table>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.covariance.EmpiricalCovariance.error_norm">
<span class="sig-name descname"><span class="pre">error_norm</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">comp_cov</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">norm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'frobenius'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">scaling</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">squared</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/covariance/_empirical_covariance.py#L282"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.covariance.EmpiricalCovariance.error_norm" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the Mean Squared Error between two covariance estimators.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>comp_cov</strong><span class="classifier">array-like of shape (n_features, n_features)</span></dt><dd><p>The covariance to compare with.</p>
</dd>
<dt><strong>norm</strong><span class="classifier">{“frobenius”, “spectral”}, default=”frobenius”</span></dt><dd><p>The type of norm used to compute the error. Available error types:
- ‘frobenius’ (default): sqrt(tr(A^t.A))
- ‘spectral’: sqrt(max(eigenvalues(A^t.A))
where A is the error <code class="docutils literal notranslate"><span class="pre">(comp_cov</span> <span class="pre">-</span> <span class="pre">self.covariance_)</span></code>.</p>
</dd>
<dt><strong>scaling</strong><span class="classifier">bool, default=True</span></dt><dd><p>If True (default), the squared error norm is divided by n_features.
If False, the squared error norm is not rescaled.</p>
</dd>
<dt><strong>squared</strong><span class="classifier">bool, default=True</span></dt><dd><p>Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned.
If False, the error norm is returned.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>result</strong><span class="classifier">float</span></dt><dd><p>The Mean Squared Error (in the sense of the Frobenius norm) between
<code class="docutils literal notranslate"><span class="pre">self</span></code> and <code class="docutils literal notranslate"><span class="pre">comp_cov</span></code> covariance estimators.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.covariance.EmpiricalCovariance.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/covariance/_empirical_covariance.py#L223"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.covariance.EmpiricalCovariance.fit" title="Permalink to this definition">¶</a></dt>
<dd><p>Fit the maximum likelihood covariance estimator to X.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>Training data, where <code class="docutils literal notranslate"><span class="pre">n_samples</span></code> is the number of samples and
<code class="docutils literal notranslate"><span class="pre">n_features</span></code> is the number of features.</p>
</dd>
<dt><strong>y</strong><span class="classifier">Ignored</span></dt><dd><p>Not used, present for API consistency by convention.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>self</strong><span class="classifier">object</span></dt><dd><p>Returns the instance itself.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.covariance.EmpiricalCovariance.get_metadata_routing">
<span class="sig-name descname"><span class="pre">get_metadata_routing</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/utils/_metadata_requests.py#L1243"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.covariance.EmpiricalCovariance.get_metadata_routing" title="Permalink to this definition">¶</a></dt>
<dd><p>Get metadata routing of this object.</p>
<p>Please check <a class="reference internal" href="../../metadata_routing.html#metadata-routing"><span class="std std-ref">User Guide</span></a> on how the routing
mechanism works.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>routing</strong><span class="classifier">MetadataRequest</span></dt><dd><p>A <a class="reference internal" href="sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest" title="sklearn.utils.metadata_routing.MetadataRequest"><code class="xref py py-class docutils literal notranslate"><span class="pre">MetadataRequest</span></code></a> encapsulating
routing information.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.covariance.EmpiricalCovariance.get_params">
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/base.py#L178"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.covariance.EmpiricalCovariance.get_params" title="Permalink to this definition">¶</a></dt>
<dd><p>Get parameters for this estimator.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>deep</strong><span class="classifier">bool, default=True</span></dt><dd><p>If True, will return the parameters for this estimator and
contained subobjects that are estimators.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>params</strong><span class="classifier">dict</span></dt><dd><p>Parameter names mapped to their values.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.covariance.EmpiricalCovariance.get_precision">
<span class="sig-name descname"><span class="pre">get_precision</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/covariance/_empirical_covariance.py#L209"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.covariance.EmpiricalCovariance.get_precision" title="Permalink to this definition">¶</a></dt>
<dd><p>Getter for the precision matrix.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>precision_</strong><span class="classifier">array-like of shape (n_features, n_features)</span></dt><dd><p>The precision matrix associated to the current covariance object.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.covariance.EmpiricalCovariance.mahalanobis">
<span class="sig-name descname"><span class="pre">mahalanobis</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/covariance/_empirical_covariance.py#L333"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.covariance.EmpiricalCovariance.mahalanobis" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the squared Mahalanobis distances of given observations.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>The observations, the Mahalanobis distances of the which we
compute. Observations are assumed to be drawn from the same
distribution than the data used in fit.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>dist</strong><span class="classifier">ndarray of shape (n_samples,)</span></dt><dd><p>Squared Mahalanobis distances of the observations.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.covariance.EmpiricalCovariance.score">
<span class="sig-name descname"><span class="pre">score</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X_test</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/covariance/_empirical_covariance.py#L251"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.covariance.EmpiricalCovariance.score" title="Permalink to this definition">¶</a></dt>
<dd><p>Compute the log-likelihood of <code class="docutils literal notranslate"><span class="pre">X_test</span></code> under the estimated Gaussian model.</p>
<p>The Gaussian model is defined by its mean and covariance matrix which are
represented respectively by <code class="docutils literal notranslate"><span class="pre">self.location_</span></code> and <code class="docutils literal notranslate"><span class="pre">self.covariance_</span></code>.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>X_test</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>Test data of which we compute the likelihood, where <code class="docutils literal notranslate"><span class="pre">n_samples</span></code> is
the number of samples and <code class="docutils literal notranslate"><span class="pre">n_features</span></code> is the number of features.
<code class="docutils literal notranslate"><span class="pre">X_test</span></code> is assumed to be drawn from the same distribution than
the data used in fit (including centering).</p>
</dd>
<dt><strong>y</strong><span class="classifier">Ignored</span></dt><dd><p>Not used, present for API consistency by convention.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>res</strong><span class="classifier">float</span></dt><dd><p>The log-likelihood of <code class="docutils literal notranslate"><span class="pre">X_test</span></code> with <code class="docutils literal notranslate"><span class="pre">self.location_</span></code> and <code class="docutils literal notranslate"><span class="pre">self.covariance_</span></code>
as estimators of the Gaussian model mean and covariance matrix respectively.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.covariance.EmpiricalCovariance.set_params">
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/base.py#L202"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.covariance.EmpiricalCovariance.set_params" title="Permalink to this definition">¶</a></dt>
<dd><p>Set the parameters of this estimator.</p>
<p>The method works on simple estimators as well as on nested objects
(such as <a class="reference internal" href="sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a>). The latter have
parameters of the form <code class="docutils literal notranslate"><span class="pre"><component>__<parameter></span></code> so that it’s
possible to update each component of a nested object.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>**params</strong><span class="classifier">dict</span></dt><dd><p>Estimator parameters.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>self</strong><span class="classifier">estimator instance</span></dt><dd><p>Estimator instance.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.covariance.EmpiricalCovariance.set_score_request">
<span class="sig-name descname"><span class="pre">set_score_request</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">X_test</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Union" title="(in Python v3.12)"><span class="pre">Union</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'$UNCHANGED$'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sklearn.covariance.EmpiricalCovariance" title="sklearn.covariance._empirical_covariance.EmpiricalCovariance"><span class="pre">EmpiricalCovariance</span></a></span></span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/utils/_metadata_requests.py#L1033"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.covariance.EmpiricalCovariance.set_score_request" title="Permalink to this definition">¶</a></dt>
<dd><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">score</span></code> method.</p>
<p>Note that this method is only relevant if
<code class="docutils literal notranslate"><span class="pre">enable_metadata_routing=True</span></code> (see <a class="reference internal" href="sklearn.set_config.html#sklearn.set_config" title="sklearn.set_config"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.set_config</span></code></a>).
Please see <a class="reference internal" href="../../metadata_routing.html#metadata-routing"><span class="std std-ref">User Guide</span></a> on how the routing
mechanism works.</p>
<p>The options for each parameter are:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">True</span></code>: metadata is requested, and passed to <code class="docutils literal notranslate"><span class="pre">score</span></code> if provided. The request is ignored if metadata is not provided.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">False</span></code>: metadata is not requested and the meta-estimator will not pass it to <code class="docutils literal notranslate"><span class="pre">score</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">None</span></code>: metadata is not requested, and the meta-estimator will raise an error if the user provides it.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">str</span></code>: metadata should be passed to the meta-estimator with this given alias instead of the original name.</p></li>
</ul>
<p>The default (<code class="docutils literal notranslate"><span class="pre">sklearn.utils.metadata_routing.UNCHANGED</span></code>) retains the
existing request. This allows you to change the request for some
parameters and not others.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.3.</span></p>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
<a class="reference internal" href="sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a>. Otherwise it has no effect.</p>
</div>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>X_test</strong><span class="classifier">str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED</span></dt><dd><p>Metadata routing for <code class="docutils literal notranslate"><span class="pre">X_test</span></code> parameter in <code class="docutils literal notranslate"><span class="pre">score</span></code>.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>self</strong><span class="classifier">object</span></dt><dd><p>The updated object.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
</dd></dl>
<section id="examples-using-sklearn-covariance-empiricalcovariance">
<h2>Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.covariance.EmpiricalCovariance</span></code><a class="headerlink" href="#examples-using-sklearn-covariance-empiricalcovariance" title="Permalink to this heading">¶</a></h2>
<div class="sphx-glr-thumbnails"><div class="sphx-glr-thumbcontainer" tooltip="This example shows covariance estimation with Mahalanobis distances on Gaussian distributed dat..."><img alt="" src="../../_images/sphx_glr_plot_mahalanobis_distances_thumb.png" />
<p><a class="reference internal" href="../../auto_examples/covariance/plot_mahalanobis_distances.html#sphx-glr-auto-examples-covariance-plot-mahalanobis-distances-py"><span class="std std-ref">Robust covariance estimation and Mahalanobis distances relevance</span></a></p>
<div class="sphx-glr-thumbnail-title">Robust covariance estimation and Mahalanobis distances relevance</div>
</div><div class="sphx-glr-thumbcontainer" tooltip="The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers ..."><img alt="" src="../../_images/sphx_glr_plot_robust_vs_empirical_covariance_thumb.png" />
<p><a class="reference internal" href="../../auto_examples/covariance/plot_robust_vs_empirical_covariance.html#sphx-glr-auto-examples-covariance-plot-robust-vs-empirical-covariance-py"><span class="std std-ref">Robust vs Empirical covariance estimate</span></a></p>
<div class="sphx-glr-thumbnail-title">Robust vs Empirical covariance estimate</div>
</div><div class="sphx-glr-thumbcontainer" tooltip="When working with covariance estimation, the usual approach is to use a maximum likelihood esti..."><img alt="" src="../../_images/sphx_glr_plot_covariance_estimation_thumb.png" />
<p><a class="reference internal" href="../../auto_examples/covariance/plot_covariance_estimation.html#sphx-glr-auto-examples-covariance-plot-covariance-estimation-py"><span class="std std-ref">Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood</span></a></p>
<div class="sphx-glr-thumbnail-title">Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood</div>
</div></div><div class="clearer"></div></section>
</section>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2023, scikit-learn developers (BSD License).
<a href="../../_sources/modules/generated/sklearn.covariance.EmpiricalCovariance.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="../../_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script defer data-domain="scikit-learn.org" src="https://views.scientific-python.org/js/script.js">
</script>
<script src="../../_static/clipboard.min.js"></script>
<script src="../../_static/copybutton.js"></script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>