-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathplot_anomaly_comparison.html
477 lines (426 loc) · 52.4 KB
/
plot_anomaly_comparison.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta property="og:title" content="Comparing anomaly detection algorithms for outlier detection on toy datasets" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/auto_examples/miscellaneous/plot_anomaly_comparison.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="This example shows characteristics of different anomaly detection algorithms on 2D datasets. Datasets contain one or two modes (regions of high density) to illustrate the ability of algorithms to c..." />
<meta property="og:image" content="https://scikit-learn.org/stable/_static/scikit-learn-logo-small.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="This example shows characteristics of different anomaly detection algorithms on 2D datasets. Datasets contain one or two modes (regions of high density) to illustrate the ability of algorithms to c..." />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Comparing anomaly detection algorithms for outlier detection on toy datasets — scikit-learn 1.2.2 documentation</title>
<link rel="canonical" href="http://scikit-learn.org/stable/auto_examples/miscellaneous/plot_anomaly_comparison.html" />
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="stylesheet" href="../../_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/plot_directive.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/js/vendor/jquery-3.6.3.slim.min.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="../../index.html">
<img
class="sk-brand-img"
src="../../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../modules/classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../getting_started.html" >Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../tutorial/index.html" >Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../whats_new/v1.2.html" >What's new</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../glossary.html" >Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../faq.html" >FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../support.html" >Support</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../related_projects.html" >Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../roadmap.html" >Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../governance.html" >Governance</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../about.html" >About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="../../getting_started.html" >Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../tutorial/index.html" >Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../whats_new/v1.2.html" >What's new</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../glossary.html" >Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../faq.html" >FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../support.html" >Support</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../related_projects.html" >Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../roadmap.html" >Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../governance.html" >Governance</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../about.html" >About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="../../search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="plot_partial_dependence_visualization_api.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Advanced Plotting With Partial Dependence">Prev</a><a href="index.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Miscellaneous">Up</a>
<a href="plot_kernel_ridge_regression.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Comparison of kernel ridge regression and SVR">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 1.2.2</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="../../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li><a class="reference internal" href="#">Comparing anomaly detection algorithms for outlier detection on toy datasets</a></li>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<div class="sphx-glr-download-link-note admonition note">
<p class="admonition-title">Note</p>
<p>Click <a class="reference internal" href="#sphx-glr-download-auto-examples-miscellaneous-plot-anomaly-comparison-py"><span class="std std-ref">here</span></a>
to download the full example code or to run this example in your browser via Binder</p>
</div>
<section class="sphx-glr-example-title" id="comparing-anomaly-detection-algorithms-for-outlier-detection-on-toy-datasets">
<span id="sphx-glr-auto-examples-miscellaneous-plot-anomaly-comparison-py"></span><h1>Comparing anomaly detection algorithms for outlier detection on toy datasets<a class="headerlink" href="#comparing-anomaly-detection-algorithms-for-outlier-detection-on-toy-datasets" title="Permalink to this heading">¶</a></h1>
<p>This example shows characteristics of different anomaly detection algorithms
on 2D datasets. Datasets contain one or two modes (regions of high density)
to illustrate the ability of algorithms to cope with multimodal data.</p>
<p>For each dataset, 15% of samples are generated as random uniform noise. This
proportion is the value given to the nu parameter of the OneClassSVM and the
contamination parameter of the other outlier detection algorithms.
Decision boundaries between inliers and outliers are displayed in black
except for Local Outlier Factor (LOF) as it has no predict method to be applied
on new data when it is used for outlier detection.</p>
<p>The <a class="reference internal" href="../../modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM" title="sklearn.svm.OneClassSVM"><code class="xref py py-class docutils literal notranslate"><span class="pre">OneClassSVM</span></code></a> is known to be sensitive to outliers and
thus does not perform very well for outlier detection. This estimator is best
suited for novelty detection when the training set is not contaminated by
outliers. That said, outlier detection in high-dimension, or without any
assumptions on the distribution of the inlying data is very challenging, and a
One-class SVM might give useful results in these situations depending on the
value of its hyperparameters.</p>
<p>The <a class="reference internal" href="../../modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM" title="sklearn.linear_model.SGDOneClassSVM"><code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.linear_model.SGDOneClassSVM</span></code></a> is an implementation of the
One-Class SVM based on stochastic gradient descent (SGD). Combined with kernel
approximation, this estimator can be used to approximate the solution
of a kernelized <a class="reference internal" href="../../modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM" title="sklearn.svm.OneClassSVM"><code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.svm.OneClassSVM</span></code></a>. We note that, although not
identical, the decision boundaries of the
<a class="reference internal" href="../../modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM" title="sklearn.linear_model.SGDOneClassSVM"><code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.linear_model.SGDOneClassSVM</span></code></a> and the ones of
<a class="reference internal" href="../../modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM" title="sklearn.svm.OneClassSVM"><code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.svm.OneClassSVM</span></code></a> are very similar. The main advantage of using
<a class="reference internal" href="../../modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM" title="sklearn.linear_model.SGDOneClassSVM"><code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.linear_model.SGDOneClassSVM</span></code></a> is that it scales linearly with
the number of samples.</p>
<p><a class="reference internal" href="../../modules/generated/sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope" title="sklearn.covariance.EllipticEnvelope"><code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.covariance.EllipticEnvelope</span></code></a> assumes the data is Gaussian and
learns an ellipse. It thus degrades when the data is not unimodal. Notice
however that this estimator is robust to outliers.</p>
<p><a class="reference internal" href="../../modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest" title="sklearn.ensemble.IsolationForest"><code class="xref py py-class docutils literal notranslate"><span class="pre">IsolationForest</span></code></a> and
<a class="reference internal" href="../../modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor" title="sklearn.neighbors.LocalOutlierFactor"><code class="xref py py-class docutils literal notranslate"><span class="pre">LocalOutlierFactor</span></code></a> seem to perform reasonably well
for multi-modal data sets. The advantage of
<a class="reference internal" href="../../modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor" title="sklearn.neighbors.LocalOutlierFactor"><code class="xref py py-class docutils literal notranslate"><span class="pre">LocalOutlierFactor</span></code></a> over the other estimators is
shown for the third data set, where the two modes have different densities.
This advantage is explained by the local aspect of LOF, meaning that it only
compares the score of abnormality of one sample with the scores of its
neighbors.</p>
<p>Finally, for the last data set, it is hard to say that one sample is more
abnormal than another sample as they are uniformly distributed in a
hypercube. Except for the <a class="reference internal" href="../../modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM" title="sklearn.svm.OneClassSVM"><code class="xref py py-class docutils literal notranslate"><span class="pre">OneClassSVM</span></code></a> which overfits a
little, all estimators present decent solutions for this situation. In such a
case, it would be wise to look more closely at the scores of abnormality of
the samples as a good estimator should assign similar scores to all the
samples.</p>
<p>While these examples give some intuition about the algorithms, this
intuition might not apply to very high dimensional data.</p>
<p>Finally, note that parameters of the models have been here handpicked but
that in practice they need to be adjusted. In the absence of labelled data,
the problem is completely unsupervised so model selection can be a challenge.</p>
<img src="../../_images/sphx_glr_plot_anomaly_comparison_001.png" srcset="../../_images/sphx_glr_plot_anomaly_comparison_001.png" alt="Robust covariance, One-Class SVM, One-Class SVM (SGD), Isolation Forest, Local Outlier Factor" class = "sphx-glr-single-img"/><div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># Author: Alexandre Gramfort <[email protected]></span>
<span class="c1"># Albert Thomas <[email protected]></span>
<span class="c1"># License: BSD 3 clause</span>
<span class="kn">import</span> <span class="nn">time</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">sklearn</span> <span class="kn">import</span> <span class="n">svm</span>
<span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons" title="sklearn.datasets.make_moons" class="sphx-glr-backref-module-sklearn-datasets sphx-glr-backref-type-py-function"><span class="n">make_moons</span></a><span class="p">,</span> <a href="../../modules/generated/sklearn.datasets.make_blobs.html#sklearn.datasets.make_blobs" title="sklearn.datasets.make_blobs" class="sphx-glr-backref-module-sklearn-datasets sphx-glr-backref-type-py-function"><span class="n">make_blobs</span></a>
<span class="kn">from</span> <span class="nn">sklearn.covariance</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope" title="sklearn.covariance.EllipticEnvelope" class="sphx-glr-backref-module-sklearn-covariance sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">EllipticEnvelope</span></a>
<span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest" title="sklearn.ensemble.IsolationForest" class="sphx-glr-backref-module-sklearn-ensemble sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">IsolationForest</span></a>
<span class="kn">from</span> <span class="nn">sklearn.neighbors</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor" title="sklearn.neighbors.LocalOutlierFactor" class="sphx-glr-backref-module-sklearn-neighbors sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">LocalOutlierFactor</span></a>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM" title="sklearn.linear_model.SGDOneClassSVM" class="sphx-glr-backref-module-sklearn-linear_model sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">SGDOneClassSVM</span></a>
<span class="kn">from</span> <span class="nn">sklearn.kernel_approximation</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.kernel_approximation.Nystroem.html#sklearn.kernel_approximation.Nystroem" title="sklearn.kernel_approximation.Nystroem" class="sphx-glr-backref-module-sklearn-kernel_approximation sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">Nystroem</span></a>
<span class="kn">from</span> <span class="nn">sklearn.pipeline</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.pipeline.make_pipeline.html#sklearn.pipeline.make_pipeline" title="sklearn.pipeline.make_pipeline" class="sphx-glr-backref-module-sklearn-pipeline sphx-glr-backref-type-py-function"><span class="n">make_pipeline</span></a>
<a href="https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.rcParams" title="matplotlib.rcParams" class="sphx-glr-backref-module-matplotlib sphx-glr-backref-type-py-data"><span class="n">matplotlib</span><span class="o">.</span><span class="n">rcParams</span></a><span class="p">[</span><span class="s2">"contour.negative_linestyle"</span><span class="p">]</span> <span class="o">=</span> <span class="s2">"solid"</span>
<span class="c1"># Example settings</span>
<span class="n">n_samples</span> <span class="o">=</span> <span class="mi">300</span>
<span class="n">outliers_fraction</span> <span class="o">=</span> <span class="mf">0.15</span>
<span class="n">n_outliers</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">outliers_fraction</span> <span class="o">*</span> <span class="n">n_samples</span><span class="p">)</span>
<span class="n">n_inliers</span> <span class="o">=</span> <span class="n">n_samples</span> <span class="o">-</span> <span class="n">n_outliers</span>
<span class="c1"># define outlier/anomaly detection methods to be compared.</span>
<span class="c1"># the SGDOneClassSVM must be used in a pipeline with a kernel approximation</span>
<span class="c1"># to give similar results to the OneClassSVM</span>
<span class="n">anomaly_algorithms</span> <span class="o">=</span> <span class="p">[</span>
<span class="p">(</span>
<span class="s2">"Robust covariance"</span><span class="p">,</span>
<a href="../../modules/generated/sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope" title="sklearn.covariance.EllipticEnvelope" class="sphx-glr-backref-module-sklearn-covariance sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">EllipticEnvelope</span></a><span class="p">(</span><span class="n">contamination</span><span class="o">=</span><span class="n">outliers_fraction</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">42</span><span class="p">),</span>
<span class="p">),</span>
<span class="p">(</span><span class="s2">"One-Class SVM"</span><span class="p">,</span> <a href="../../modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM" title="sklearn.svm.OneClassSVM" class="sphx-glr-backref-module-sklearn-svm sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">svm</span><span class="o">.</span><span class="n">OneClassSVM</span></a><span class="p">(</span><span class="n">nu</span><span class="o">=</span><span class="n">outliers_fraction</span><span class="p">,</span> <span class="n">kernel</span><span class="o">=</span><span class="s2">"rbf"</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">0.1</span><span class="p">)),</span>
<span class="p">(</span>
<span class="s2">"One-Class SVM (SGD)"</span><span class="p">,</span>
<a href="../../modules/generated/sklearn.pipeline.make_pipeline.html#sklearn.pipeline.make_pipeline" title="sklearn.pipeline.make_pipeline" class="sphx-glr-backref-module-sklearn-pipeline sphx-glr-backref-type-py-function"><span class="n">make_pipeline</span></a><span class="p">(</span>
<a href="../../modules/generated/sklearn.kernel_approximation.Nystroem.html#sklearn.kernel_approximation.Nystroem" title="sklearn.kernel_approximation.Nystroem" class="sphx-glr-backref-module-sklearn-kernel_approximation sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">Nystroem</span></a><span class="p">(</span><span class="n">gamma</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">42</span><span class="p">,</span> <span class="n">n_components</span><span class="o">=</span><span class="mi">150</span><span class="p">),</span>
<a href="../../modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM" title="sklearn.linear_model.SGDOneClassSVM" class="sphx-glr-backref-module-sklearn-linear_model sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">SGDOneClassSVM</span></a><span class="p">(</span>
<span class="n">nu</span><span class="o">=</span><span class="n">outliers_fraction</span><span class="p">,</span>
<span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">fit_intercept</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">random_state</span><span class="o">=</span><span class="mi">42</span><span class="p">,</span>
<span class="n">tol</span><span class="o">=</span><span class="mf">1e-6</span><span class="p">,</span>
<span class="p">),</span>
<span class="p">),</span>
<span class="p">),</span>
<span class="p">(</span>
<span class="s2">"Isolation Forest"</span><span class="p">,</span>
<a href="../../modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest" title="sklearn.ensemble.IsolationForest" class="sphx-glr-backref-module-sklearn-ensemble sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">IsolationForest</span></a><span class="p">(</span><span class="n">contamination</span><span class="o">=</span><span class="n">outliers_fraction</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">42</span><span class="p">),</span>
<span class="p">),</span>
<span class="p">(</span>
<span class="s2">"Local Outlier Factor"</span><span class="p">,</span>
<a href="../../modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor" title="sklearn.neighbors.LocalOutlierFactor" class="sphx-glr-backref-module-sklearn-neighbors sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">LocalOutlierFactor</span></a><span class="p">(</span><span class="n">n_neighbors</span><span class="o">=</span><span class="mi">35</span><span class="p">,</span> <span class="n">contamination</span><span class="o">=</span><span class="n">outliers_fraction</span><span class="p">),</span>
<span class="p">),</span>
<span class="p">]</span>
<span class="c1"># Define datasets</span>
<span class="n">blobs_params</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">n_samples</span><span class="o">=</span><span class="n">n_inliers</span><span class="p">,</span> <span class="n">n_features</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">datasets</span> <span class="o">=</span> <span class="p">[</span>
<a href="../../modules/generated/sklearn.datasets.make_blobs.html#sklearn.datasets.make_blobs" title="sklearn.datasets.make_blobs" class="sphx-glr-backref-module-sklearn-datasets sphx-glr-backref-type-py-function"><span class="n">make_blobs</span></a><span class="p">(</span><span class="n">centers</span><span class="o">=</span><span class="p">[[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]],</span> <span class="n">cluster_std</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="o">**</span><span class="n">blobs_params</span><span class="p">)[</span><span class="mi">0</span><span class="p">],</span>
<a href="../../modules/generated/sklearn.datasets.make_blobs.html#sklearn.datasets.make_blobs" title="sklearn.datasets.make_blobs" class="sphx-glr-backref-module-sklearn-datasets sphx-glr-backref-type-py-function"><span class="n">make_blobs</span></a><span class="p">(</span><span class="n">centers</span><span class="o">=</span><span class="p">[[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">]],</span> <span class="n">cluster_std</span><span class="o">=</span><span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">],</span> <span class="o">**</span><span class="n">blobs_params</span><span class="p">)[</span><span class="mi">0</span><span class="p">],</span>
<a href="../../modules/generated/sklearn.datasets.make_blobs.html#sklearn.datasets.make_blobs" title="sklearn.datasets.make_blobs" class="sphx-glr-backref-module-sklearn-datasets sphx-glr-backref-type-py-function"><span class="n">make_blobs</span></a><span class="p">(</span><span class="n">centers</span><span class="o">=</span><span class="p">[[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">]],</span> <span class="n">cluster_std</span><span class="o">=</span><span class="p">[</span><span class="mf">1.5</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">],</span> <span class="o">**</span><span class="n">blobs_params</span><span class="p">)[</span><span class="mi">0</span><span class="p">],</span>
<span class="mf">4.0</span>
<span class="o">*</span> <span class="p">(</span>
<a href="../../modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons" title="sklearn.datasets.make_moons" class="sphx-glr-backref-module-sklearn-datasets sphx-glr-backref-type-py-function"><span class="n">make_moons</span></a><span class="p">(</span><span class="n">n_samples</span><span class="o">=</span><span class="n">n_samples</span><span class="p">,</span> <span class="n">noise</span><span class="o">=</span><span class="mf">0.05</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
<span class="o">-</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array" title="numpy.array" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">array</span></a><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.25</span><span class="p">])</span>
<span class="p">),</span>
<span class="mf">14.0</span> <span class="o">*</span> <span class="p">(</span><a href="https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState" title="numpy.random.RandomState" class="sphx-glr-backref-module-numpy-random sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span></a><span class="p">(</span><span class="mi">42</span><span class="p">)</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">n_samples</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> <span class="o">-</span> <span class="mf">0.5</span><span class="p">),</span>
<span class="p">]</span>
<span class="c1"># Compare given classifiers under given settings</span>
<span class="n">xx</span><span class="p">,</span> <span class="n">yy</span> <span class="o">=</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid" title="numpy.meshgrid" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span></a><span class="p">(</span><a href="https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace" title="numpy.linspace" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">linspace</span></a><span class="p">(</span><span class="o">-</span><span class="mi">7</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">150</span><span class="p">),</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace" title="numpy.linspace" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">linspace</span></a><span class="p">(</span><span class="o">-</span><span class="mi">7</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">150</span><span class="p">))</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure" title="matplotlib.pyplot.figure" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">figure</span></a><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">anomaly_algorithms</span><span class="p">)</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">+</span> <span class="mi">4</span><span class="p">,</span> <span class="mf">12.5</span><span class="p">))</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots_adjust.html#matplotlib.pyplot.subplots_adjust" title="matplotlib.pyplot.subplots_adjust" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">subplots_adjust</span></a><span class="p">(</span>
<span class="n">left</span><span class="o">=</span><span class="mf">0.02</span><span class="p">,</span> <span class="n">right</span><span class="o">=</span><span class="mf">0.98</span><span class="p">,</span> <span class="n">bottom</span><span class="o">=</span><span class="mf">0.001</span><span class="p">,</span> <span class="n">top</span><span class="o">=</span><span class="mf">0.96</span><span class="p">,</span> <span class="n">wspace</span><span class="o">=</span><span class="mf">0.05</span><span class="p">,</span> <span class="n">hspace</span><span class="o">=</span><span class="mf">0.01</span>
<span class="p">)</span>
<span class="n">plot_num</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">rng</span> <span class="o">=</span> <a href="https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState" title="numpy.random.RandomState" class="sphx-glr-backref-module-numpy-random sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span></a><span class="p">(</span><span class="mi">42</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i_dataset</span><span class="p">,</span> <span class="n">X</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">datasets</span><span class="p">):</span>
<span class="c1"># Add outliers</span>
<span class="n">X</span> <span class="o">=</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html#numpy.concatenate" title="numpy.concatenate" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span></a><span class="p">([</span><span class="n">X</span><span class="p">,</span> <span class="n">rng</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="n">low</span><span class="o">=-</span><span class="mi">6</span><span class="p">,</span> <span class="n">high</span><span class="o">=</span><span class="mi">6</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="p">(</span><span class="n">n_outliers</span><span class="p">,</span> <span class="mi">2</span><span class="p">))],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">algorithm</span> <span class="ow">in</span> <span class="n">anomaly_algorithms</span><span class="p">:</span>
<span class="n">t0</span> <span class="o">=</span> <a href="https://docs.python.org/3/library/time.html#time.time" title="time.time" class="sphx-glr-backref-module-time sphx-glr-backref-type-py-function"><span class="n">time</span><span class="o">.</span><span class="n">time</span></a><span class="p">()</span>
<span class="n">algorithm</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="n">t1</span> <span class="o">=</span> <a href="https://docs.python.org/3/library/time.html#time.time" title="time.time" class="sphx-glr-backref-module-time sphx-glr-backref-type-py-function"><span class="n">time</span><span class="o">.</span><span class="n">time</span></a><span class="p">()</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplot.html#matplotlib.pyplot.subplot" title="matplotlib.pyplot.subplot" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">subplot</span></a><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">datasets</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">anomaly_algorithms</span><span class="p">),</span> <span class="n">plot_num</span><span class="p">)</span>
<span class="k">if</span> <span class="n">i_dataset</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.title.html#matplotlib.pyplot.title" title="matplotlib.pyplot.title" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">title</span></a><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">18</span><span class="p">)</span>
<span class="c1"># fit the data and tag outliers</span>
<span class="k">if</span> <span class="n">name</span> <span class="o">==</span> <span class="s2">"Local Outlier Factor"</span><span class="p">:</span>
<span class="n">y_pred</span> <span class="o">=</span> <span class="n">algorithm</span><span class="o">.</span><span class="n">fit_predict</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">y_pred</span> <span class="o">=</span> <span class="n">algorithm</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="c1"># plot the levels lines and the points</span>
<span class="k">if</span> <span class="n">name</span> <span class="o">!=</span> <span class="s2">"Local Outlier Factor"</span><span class="p">:</span> <span class="c1"># LOF does not implement predict</span>
<span class="n">Z</span> <span class="o">=</span> <span class="n">algorithm</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><a href="https://numpy.org/doc/stable/reference/generated/numpy.c_.html#numpy.c_" title="numpy.c_" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-data"><span class="n">np</span><span class="o">.</span><span class="n">c_</span></a><span class="p">[</span><span class="n">xx</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">yy</span><span class="o">.</span><span class="n">ravel</span><span class="p">()])</span>
<span class="n">Z</span> <span class="o">=</span> <span class="n">Z</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">xx</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.contour.html#matplotlib.pyplot.contour" title="matplotlib.pyplot.contour" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">contour</span></a><span class="p">(</span><span class="n">xx</span><span class="p">,</span> <span class="n">yy</span><span class="p">,</span> <span class="n">Z</span><span class="p">,</span> <span class="n">levels</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">linewidths</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">colors</span><span class="o">=</span><span class="s2">"black"</span><span class="p">)</span>
<span class="n">colors</span> <span class="o">=</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array" title="numpy.array" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">array</span></a><span class="p">([</span><span class="s2">"#377eb8"</span><span class="p">,</span> <span class="s2">"#ff7f00"</span><span class="p">])</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter" title="matplotlib.pyplot.scatter" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">scatter</span></a><span class="p">(</span><span class="n">X</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">X</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">s</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">[(</span><span class="n">y_pred</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">])</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xlim.html#matplotlib.pyplot.xlim" title="matplotlib.pyplot.xlim" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">xlim</span></a><span class="p">(</span><span class="o">-</span><span class="mi">7</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.ylim.html#matplotlib.pyplot.ylim" title="matplotlib.pyplot.ylim" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">ylim</span></a><span class="p">(</span><span class="o">-</span><span class="mi">7</span><span class="p">,</span> <span class="mi">7</span><span class="p">)</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xticks.html#matplotlib.pyplot.xticks" title="matplotlib.pyplot.xticks" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">xticks</span></a><span class="p">(())</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.yticks.html#matplotlib.pyplot.yticks" title="matplotlib.pyplot.yticks" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">yticks</span></a><span class="p">(())</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.text.html#matplotlib.pyplot.text" title="matplotlib.pyplot.text" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">text</span></a><span class="p">(</span>
<span class="mf">0.99</span><span class="p">,</span>
<span class="mf">0.01</span><span class="p">,</span>
<span class="p">(</span><span class="s2">"</span><span class="si">%.2f</span><span class="s2">s"</span> <span class="o">%</span> <span class="p">(</span><span class="n">t1</span> <span class="o">-</span> <span class="n">t0</span><span class="p">))</span><span class="o">.</span><span class="n">lstrip</span><span class="p">(</span><span class="s2">"0"</span><span class="p">),</span>
<span class="n">transform</span><span class="o">=</span><a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca" title="matplotlib.pyplot.gca" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">gca</span></a><span class="p">()</span><span class="o">.</span><span class="n">transAxes</span><span class="p">,</span>
<span class="n">size</span><span class="o">=</span><span class="mi">15</span><span class="p">,</span>
<span class="n">horizontalalignment</span><span class="o">=</span><span class="s2">"right"</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">plot_num</span> <span class="o">+=</span> <span class="mi">1</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show" title="matplotlib.pyplot.show" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 4.401 seconds)</p>
<div class="sphx-glr-footer sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-miscellaneous-plot-anomaly-comparison-py">
<div class="binder-badge docutils container">
<a class="reference external image-reference" href="https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.2.X?urlpath=lab/tree/notebooks/auto_examples/miscellaneous/plot_anomaly_comparison.ipynb"><img alt="Launch binder" src="../../_images/binder_badge_logo23.svg" width="150px" /></a>
</div>
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/9057446ce5a251004d1743be3a7c5f0e/plot_anomaly_comparison.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_anomaly_comparison.py</span></code></a></p>
</div>
<div class="sphx-glr-download sphx-glr-download-jupyter docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/1916a2a88b97d84ae7b7fb44d3f5503b/plot_anomaly_comparison.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">plot_anomaly_comparison.ipynb</span></code></a></p>
</div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.github.io">Gallery generated by Sphinx-Gallery</a></p>
</section>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2023, scikit-learn developers (BSD License).
<a href="../../_sources/auto_examples/miscellaneous/plot_anomaly_comparison.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="../../_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script defer data-domain="scikit-learn.org" src="https://views.scientific-python.org/js/script.js">
</script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
var hide_text = 'Hide prompts and outputs';
var show_text = 'Show prompts and outputs';
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
if (jthis.find('.gp').length > 0) {
var button = $('<span class="copybutton">>>></span>');
button.attr('title', hide_text);
button.data('hidden', 'false');
jthis.prepend(button);
}
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
// define the behavior of the button when it's clicked
$('.copybutton').click(function(e){
e.preventDefault();
var button = $(this);
if (button.data('hidden') === 'false') {
// hide the code output
button.parent().find('.go, .gp, .gt').hide();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'hidden');
button.css('text-decoration', 'line-through');
button.attr('title', show_text);
button.data('hidden', 'true');
} else {
// show the code output
button.parent().find('.go, .gp, .gt').show();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'visible');
button.css('text-decoration', 'none');
button.attr('title', hide_text);
button.data('hidden', 'false');
}
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>