-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathplot_prediction_latency.html
659 lines (580 loc) · 76.6 KB
/
plot_prediction_latency.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta property="og:title" content="Prediction Latency" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/auto_examples/applications/plot_prediction_latency.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by ..." />
<meta property="og:image" content="https://scikit-learn.org/stable/_static/scikit-learn-logo-small.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by ..." />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Prediction Latency — scikit-learn 1.2.2 documentation</title>
<link rel="canonical" href="http://scikit-learn.org/stable/auto_examples/applications/plot_prediction_latency.html" />
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="stylesheet" href="../../_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/plot_directive.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/js/vendor/jquery-3.6.3.slim.min.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="../../index.html">
<img
class="sk-brand-img"
src="../../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../modules/classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../getting_started.html" >Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../tutorial/index.html" >Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../whats_new/v1.2.html" >What's new</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../glossary.html" >Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../faq.html" >FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../support.html" >Support</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../related_projects.html" >Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../roadmap.html" >Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../governance.html" >Governance</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../about.html" >About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="../../getting_started.html" >Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../tutorial/index.html" >Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../whats_new/v1.2.html" >What's new</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../glossary.html" >Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../faq.html" >FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../support.html" >Support</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../related_projects.html" >Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../roadmap.html" >Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../governance.html" >Governance</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../about.html" >About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="../../search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="plot_outlier_detection_wine.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Outlier detection on a real data set">Prev</a><a href="index.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Examples based on real world datasets">Up</a>
<a href="plot_species_distribution_modeling.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Species distribution modeling">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 1.2.2</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="../../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li><a class="reference internal" href="#">Prediction Latency</a><ul>
<li><a class="reference internal" href="#benchmark-and-plot-helper-functions">Benchmark and plot helper functions</a></li>
<li><a class="reference internal" href="#benchmark-bulk-atomic-prediction-speed-for-various-regressors">Benchmark bulk/atomic prediction speed for various regressors</a></li>
<li><a class="reference internal" href="#benchmark-n-features-influence-on-prediction-speed">Benchmark n_features influence on prediction speed</a></li>
<li><a class="reference internal" href="#benchmark-throughput">Benchmark throughput</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<div class="sphx-glr-download-link-note admonition note">
<p class="admonition-title">Note</p>
<p>Click <a class="reference internal" href="#sphx-glr-download-auto-examples-applications-plot-prediction-latency-py"><span class="std std-ref">here</span></a>
to download the full example code or to run this example in your browser via Binder</p>
</div>
<section class="sphx-glr-example-title" id="prediction-latency">
<span id="sphx-glr-auto-examples-applications-plot-prediction-latency-py"></span><h1>Prediction Latency<a class="headerlink" href="#prediction-latency" title="Permalink to this heading">¶</a></h1>
<p>This is an example showing the prediction latency of various scikit-learn
estimators.</p>
<p>The goal is to measure the latency one can expect when doing predictions
either in bulk or atomic (i.e. one by one) mode.</p>
<p>The plots represent the distribution of the prediction latency as a boxplot.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># Authors: Eustache Diemert <[email protected]></span>
<span class="c1"># License: BSD 3 clause</span>
<span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <a href="https://docs.python.org/3/library/collections.html#collections.defaultdict" title="collections.defaultdict" class="sphx-glr-backref-module-collections sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">defaultdict</span></a>
<span class="kn">import</span> <span class="nn">time</span>
<span class="kn">import</span> <span class="nn">gc</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">sklearn.preprocessing</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler" title="sklearn.preprocessing.StandardScaler" class="sphx-glr-backref-module-sklearn-preprocessing sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">StandardScaler</span></a>
<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split" title="sklearn.model_selection.train_test_split" class="sphx-glr-backref-module-sklearn-model_selection sphx-glr-backref-type-py-function"><span class="n">train_test_split</span></a>
<span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.datasets.make_regression.html#sklearn.datasets.make_regression" title="sklearn.datasets.make_regression" class="sphx-glr-backref-module-sklearn-datasets sphx-glr-backref-type-py-function"><span class="n">make_regression</span></a>
<span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor" title="sklearn.ensemble.RandomForestRegressor" class="sphx-glr-backref-module-sklearn-ensemble sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">RandomForestRegressor</span></a>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge" title="sklearn.linear_model.Ridge" class="sphx-glr-backref-module-sklearn-linear_model sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">Ridge</span></a>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor" title="sklearn.linear_model.SGDRegressor" class="sphx-glr-backref-module-sklearn-linear_model sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">SGDRegressor</span></a>
<span class="kn">from</span> <span class="nn">sklearn.svm</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR" title="sklearn.svm.SVR" class="sphx-glr-backref-module-sklearn-svm sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">SVR</span></a>
<span class="kn">from</span> <span class="nn">sklearn.utils</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.utils.shuffle.html#sklearn.utils.shuffle" title="sklearn.utils.shuffle" class="sphx-glr-backref-module-sklearn-utils sphx-glr-backref-type-py-function"><span class="n">shuffle</span></a>
<span class="k">def</span> <span class="nf">_not_in_sphinx</span><span class="p">():</span>
<span class="c1"># Hack to detect whether we are running by the sphinx builder</span>
<span class="k">return</span> <span class="s2">"__file__"</span> <span class="ow">in</span> <span class="nb">globals</span><span class="p">()</span>
</pre></div>
</div>
<section id="benchmark-and-plot-helper-functions">
<h2>Benchmark and plot helper functions<a class="headerlink" href="#benchmark-and-plot-helper-functions" title="Permalink to this heading">¶</a></h2>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">atomic_benchmark_estimator</span><span class="p">(</span><span class="n">estimator</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w"> </span><span class="sd">"""Measure runtime prediction of each instance."""</span>
<span class="n">n_instances</span> <span class="o">=</span> <span class="n">X_test</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">runtimes</span> <span class="o">=</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros" title="numpy.zeros" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">zeros</span></a><span class="p">(</span><span class="n">n_instances</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">float</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n_instances</span><span class="p">):</span>
<span class="n">instance</span> <span class="o">=</span> <span class="n">X_test</span><span class="p">[[</span><span class="n">i</span><span class="p">],</span> <span class="p">:]</span>
<span class="n">start</span> <span class="o">=</span> <a href="https://docs.python.org/3/library/time.html#time.time" title="time.time" class="sphx-glr-backref-module-time sphx-glr-backref-type-py-function"><span class="n">time</span><span class="o">.</span><span class="n">time</span></a><span class="p">()</span>
<span class="n">estimator</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">instance</span><span class="p">)</span>
<span class="n">runtimes</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <a href="https://docs.python.org/3/library/time.html#time.time" title="time.time" class="sphx-glr-backref-module-time sphx-glr-backref-type-py-function"><span class="n">time</span><span class="o">.</span><span class="n">time</span></a><span class="p">()</span> <span class="o">-</span> <span class="n">start</span>
<span class="k">if</span> <span class="n">verbose</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span>
<span class="s2">"atomic_benchmark runtimes:"</span><span class="p">,</span>
<span class="nb">min</span><span class="p">(</span><span class="n">runtimes</span><span class="p">),</span>
<a href="https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile" title="numpy.percentile" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">percentile</span></a><span class="p">(</span><span class="n">runtimes</span><span class="p">,</span> <span class="mi">50</span><span class="p">),</span>
<span class="nb">max</span><span class="p">(</span><span class="n">runtimes</span><span class="p">),</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">runtimes</span>
<span class="k">def</span> <span class="nf">bulk_benchmark_estimator</span><span class="p">(</span><span class="n">estimator</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">n_bulk_repeats</span><span class="p">,</span> <span class="n">verbose</span><span class="p">):</span>
<span class="w"> </span><span class="sd">"""Measure runtime prediction of the whole input."""</span>
<span class="n">n_instances</span> <span class="o">=</span> <span class="n">X_test</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">runtimes</span> <span class="o">=</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros" title="numpy.zeros" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">zeros</span></a><span class="p">(</span><span class="n">n_bulk_repeats</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">float</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n_bulk_repeats</span><span class="p">):</span>
<span class="n">start</span> <span class="o">=</span> <a href="https://docs.python.org/3/library/time.html#time.time" title="time.time" class="sphx-glr-backref-module-time sphx-glr-backref-type-py-function"><span class="n">time</span><span class="o">.</span><span class="n">time</span></a><span class="p">()</span>
<span class="n">estimator</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="n">runtimes</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <a href="https://docs.python.org/3/library/time.html#time.time" title="time.time" class="sphx-glr-backref-module-time sphx-glr-backref-type-py-function"><span class="n">time</span><span class="o">.</span><span class="n">time</span></a><span class="p">()</span> <span class="o">-</span> <span class="n">start</span>
<span class="n">runtimes</span> <span class="o">=</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array" title="numpy.array" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">array</span></a><span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span> <span class="o">/</span> <span class="nb">float</span><span class="p">(</span><span class="n">n_instances</span><span class="p">),</span> <span class="n">runtimes</span><span class="p">)))</span>
<span class="k">if</span> <span class="n">verbose</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span>
<span class="s2">"bulk_benchmark runtimes:"</span><span class="p">,</span>
<span class="nb">min</span><span class="p">(</span><span class="n">runtimes</span><span class="p">),</span>
<a href="https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile" title="numpy.percentile" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">percentile</span></a><span class="p">(</span><span class="n">runtimes</span><span class="p">,</span> <span class="mi">50</span><span class="p">),</span>
<span class="nb">max</span><span class="p">(</span><span class="n">runtimes</span><span class="p">),</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">runtimes</span>
<span class="k">def</span> <span class="nf">benchmark_estimator</span><span class="p">(</span><span class="n">estimator</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">n_bulk_repeats</span><span class="o">=</span><span class="mi">30</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w"> </span><span class="sd">"""</span>
<span class="sd"> Measure runtimes of prediction in both atomic and bulk mode.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> estimator : already trained estimator supporting `predict()`</span>
<span class="sd"> X_test : test input</span>
<span class="sd"> n_bulk_repeats : how many times to repeat when evaluating bulk mode</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the</span>
<span class="sd"> runtimes in seconds.</span>
<span class="sd"> """</span>
<span class="n">atomic_runtimes</span> <span class="o">=</span> <span class="n">atomic_benchmark_estimator</span><span class="p">(</span><span class="n">estimator</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">verbose</span><span class="p">)</span>
<span class="n">bulk_runtimes</span> <span class="o">=</span> <span class="n">bulk_benchmark_estimator</span><span class="p">(</span><span class="n">estimator</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">n_bulk_repeats</span><span class="p">,</span> <span class="n">verbose</span><span class="p">)</span>
<span class="k">return</span> <span class="n">atomic_runtimes</span><span class="p">,</span> <span class="n">bulk_runtimes</span>
<span class="k">def</span> <span class="nf">generate_dataset</span><span class="p">(</span><span class="n">n_train</span><span class="p">,</span> <span class="n">n_test</span><span class="p">,</span> <span class="n">n_features</span><span class="p">,</span> <span class="n">noise</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="w"> </span><span class="sd">"""Generate a regression dataset with the given parameters."""</span>
<span class="k">if</span> <span class="n">verbose</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"generating dataset..."</span><span class="p">)</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">coef</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.datasets.make_regression.html#sklearn.datasets.make_regression" title="sklearn.datasets.make_regression" class="sphx-glr-backref-module-sklearn-datasets sphx-glr-backref-type-py-function"><span class="n">make_regression</span></a><span class="p">(</span>
<span class="n">n_samples</span><span class="o">=</span><span class="n">n_train</span> <span class="o">+</span> <span class="n">n_test</span><span class="p">,</span> <span class="n">n_features</span><span class="o">=</span><span class="n">n_features</span><span class="p">,</span> <span class="n">noise</span><span class="o">=</span><span class="n">noise</span><span class="p">,</span> <span class="n">coef</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
<span class="n">random_seed</span> <span class="o">=</span> <span class="mi">13</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split" title="sklearn.model_selection.train_test_split" class="sphx-glr-backref-module-sklearn-model_selection sphx-glr-backref-type-py-function"><span class="n">train_test_split</span></a><span class="p">(</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">train_size</span><span class="o">=</span><span class="n">n_train</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="n">n_test</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="n">random_seed</span>
<span class="p">)</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.utils.shuffle.html#sklearn.utils.shuffle" title="sklearn.utils.shuffle" class="sphx-glr-backref-module-sklearn-utils sphx-glr-backref-type-py-function"><span class="n">shuffle</span></a><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="n">random_seed</span><span class="p">)</span>
<span class="n">X_scaler</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler" title="sklearn.preprocessing.StandardScaler" class="sphx-glr-backref-module-sklearn-preprocessing sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">StandardScaler</span></a><span class="p">()</span>
<span class="n">X_train</span> <span class="o">=</span> <span class="n">X_scaler</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">X_train</span><span class="p">)</span>
<span class="n">X_test</span> <span class="o">=</span> <span class="n">X_scaler</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="n">y_scaler</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler" title="sklearn.preprocessing.StandardScaler" class="sphx-glr-backref-module-sklearn-preprocessing sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">StandardScaler</span></a><span class="p">()</span>
<span class="n">y_train</span> <span class="o">=</span> <span class="n">y_scaler</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">y_train</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">])[:,</span> <span class="mi">0</span><span class="p">]</span>
<span class="n">y_test</span> <span class="o">=</span> <span class="n">y_scaler</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">y_test</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">])[:,</span> <span class="mi">0</span><span class="p">]</span>
<a href="https://docs.python.org/3/library/gc.html#gc.collect" title="gc.collect" class="sphx-glr-backref-module-gc sphx-glr-backref-type-py-function"><span class="n">gc</span><span class="o">.</span><span class="n">collect</span></a><span class="p">()</span>
<span class="k">if</span> <span class="n">verbose</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"ok"</span><span class="p">)</span>
<span class="k">return</span> <span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span>
<span class="k">def</span> <span class="nf">boxplot_runtimes</span><span class="p">(</span><span class="n">runtimes</span><span class="p">,</span> <span class="n">pred_type</span><span class="p">,</span> <span class="n">configuration</span><span class="p">):</span>
<span class="w"> </span><span class="sd">"""</span>
<span class="sd"> Plot a new `Figure` with boxplots of prediction runtimes.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> runtimes : list of `np.array` of latencies in micro-seconds</span>
<span class="sd"> cls_names : list of estimator class names that generated the runtimes</span>
<span class="sd"> pred_type : 'bulk' or 'atomic'</span>
<span class="sd"> """</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots" title="matplotlib.pyplot.subplots" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">subplots</span></a><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">6</span><span class="p">))</span>
<span class="n">bp</span> <span class="o">=</span> <a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html#matplotlib.pyplot.boxplot" title="matplotlib.pyplot.boxplot" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">boxplot</span></a><span class="p">(</span>
<span class="n">runtimes</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">cls_infos</span> <span class="o">=</span> <span class="p">[</span>
<span class="s2">"</span><span class="si">%s</span><span class="se">\n</span><span class="s2">(</span><span class="si">%d</span><span class="s2"> </span><span class="si">%s</span><span class="s2">)"</span>
<span class="o">%</span> <span class="p">(</span>
<span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"name"</span><span class="p">],</span>
<span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"complexity_computer"</span><span class="p">](</span><span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"instance"</span><span class="p">]),</span>
<span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"complexity_label"</span><span class="p">],</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">estimator_conf</span> <span class="ow">in</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"estimators"</span><span class="p">]</span>
<span class="p">]</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.setp.html#matplotlib.pyplot.setp" title="matplotlib.pyplot.setp" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">setp</span></a><span class="p">(</span><span class="n">ax1</span><span class="p">,</span> <span class="n">xticklabels</span><span class="o">=</span><span class="n">cls_infos</span><span class="p">)</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.setp.html#matplotlib.pyplot.setp" title="matplotlib.pyplot.setp" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">setp</span></a><span class="p">(</span><span class="n">bp</span><span class="p">[</span><span class="s2">"boxes"</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s2">"black"</span><span class="p">)</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.setp.html#matplotlib.pyplot.setp" title="matplotlib.pyplot.setp" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">setp</span></a><span class="p">(</span><span class="n">bp</span><span class="p">[</span><span class="s2">"whiskers"</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s2">"black"</span><span class="p">)</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.setp.html#matplotlib.pyplot.setp" title="matplotlib.pyplot.setp" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">setp</span></a><span class="p">(</span><span class="n">bp</span><span class="p">[</span><span class="s2">"fliers"</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s2">"red"</span><span class="p">,</span> <span class="n">marker</span><span class="o">=</span><span class="s2">"+"</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">yaxis</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="kc">True</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s2">"-"</span><span class="p">,</span> <span class="n">which</span><span class="o">=</span><span class="s2">"major"</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s2">"lightgrey"</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_axisbelow</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span>
<span class="s2">"Prediction Time per Instance - </span><span class="si">%s</span><span class="s2">, </span><span class="si">%d</span><span class="s2"> feats."</span>
<span class="o">%</span> <span class="p">(</span><span class="n">pred_type</span><span class="o">.</span><span class="n">capitalize</span><span class="p">(),</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"n_features"</span><span class="p">])</span>
<span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">"Prediction Time (us)"</span><span class="p">)</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show" title="matplotlib.pyplot.show" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
<span class="k">def</span> <span class="nf">benchmark</span><span class="p">(</span><span class="n">configuration</span><span class="p">):</span>
<span class="w"> </span><span class="sd">"""Run the whole benchmark."""</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">generate_dataset</span><span class="p">(</span>
<span class="n">configuration</span><span class="p">[</span><span class="s2">"n_train"</span><span class="p">],</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"n_test"</span><span class="p">],</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"n_features"</span><span class="p">]</span>
<span class="p">)</span>
<span class="n">stats</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">for</span> <span class="n">estimator_conf</span> <span class="ow">in</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"estimators"</span><span class="p">]:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Benchmarking"</span><span class="p">,</span> <span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"instance"</span><span class="p">])</span>
<span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"instance"</span><span class="p">]</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<a href="https://docs.python.org/3/library/gc.html#gc.collect" title="gc.collect" class="sphx-glr-backref-module-gc sphx-glr-backref-type-py-function"><span class="n">gc</span><span class="o">.</span><span class="n">collect</span></a><span class="p">()</span>
<span class="n">a</span><span class="p">,</span> <span class="n">b</span> <span class="o">=</span> <span class="n">benchmark_estimator</span><span class="p">(</span><span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"instance"</span><span class="p">],</span> <span class="n">X_test</span><span class="p">)</span>
<span class="n">stats</span><span class="p">[</span><span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"name"</span><span class="p">]]</span> <span class="o">=</span> <span class="p">{</span><span class="s2">"atomic"</span><span class="p">:</span> <span class="n">a</span><span class="p">,</span> <span class="s2">"bulk"</span><span class="p">:</span> <span class="n">b</span><span class="p">}</span>
<span class="n">cls_names</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"name"</span><span class="p">]</span> <span class="k">for</span> <span class="n">estimator_conf</span> <span class="ow">in</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"estimators"</span><span class="p">]</span>
<span class="p">]</span>
<span class="n">runtimes</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1e6</span> <span class="o">*</span> <span class="n">stats</span><span class="p">[</span><span class="n">clf_name</span><span class="p">][</span><span class="s2">"atomic"</span><span class="p">]</span> <span class="k">for</span> <span class="n">clf_name</span> <span class="ow">in</span> <span class="n">cls_names</span><span class="p">]</span>
<span class="n">boxplot_runtimes</span><span class="p">(</span><span class="n">runtimes</span><span class="p">,</span> <span class="s2">"atomic"</span><span class="p">,</span> <span class="n">configuration</span><span class="p">)</span>
<span class="n">runtimes</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1e6</span> <span class="o">*</span> <span class="n">stats</span><span class="p">[</span><span class="n">clf_name</span><span class="p">][</span><span class="s2">"bulk"</span><span class="p">]</span> <span class="k">for</span> <span class="n">clf_name</span> <span class="ow">in</span> <span class="n">cls_names</span><span class="p">]</span>
<span class="n">boxplot_runtimes</span><span class="p">(</span><span class="n">runtimes</span><span class="p">,</span> <span class="s2">"bulk (</span><span class="si">%d</span><span class="s2">)"</span> <span class="o">%</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"n_test"</span><span class="p">],</span> <span class="n">configuration</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">n_feature_influence</span><span class="p">(</span><span class="n">estimators</span><span class="p">,</span> <span class="n">n_train</span><span class="p">,</span> <span class="n">n_test</span><span class="p">,</span> <span class="n">n_features</span><span class="p">,</span> <span class="n">percentile</span><span class="p">):</span>
<span class="w"> </span><span class="sd">"""</span>
<span class="sd"> Estimate influence of the number of features on prediction time.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> estimators : dict of (name (str), estimator) to benchmark</span>
<span class="sd"> n_train : nber of training instances (int)</span>
<span class="sd"> n_test : nber of testing instances (int)</span>
<span class="sd"> n_features : list of feature-space dimensionality to test (int)</span>
<span class="sd"> percentile : percentile at which to measure the speed (int [0-100])</span>
<span class="sd"> Returns:</span>
<span class="sd"> --------</span>
<span class="sd"> percentiles : dict(estimator_name,</span>
<span class="sd"> dict(n_features, percentile_perf_in_us))</span>
<span class="sd"> """</span>
<span class="n">percentiles</span> <span class="o">=</span> <a href="https://docs.python.org/3/library/collections.html#collections.defaultdict" title="collections.defaultdict" class="sphx-glr-backref-module-collections sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">defaultdict</span></a><span class="p">(</span><a href="https://docs.python.org/3/library/collections.html#collections.defaultdict" title="collections.defaultdict" class="sphx-glr-backref-module-collections sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">defaultdict</span></a><span class="p">)</span>
<span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">n_features</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"benchmarking with </span><span class="si">%d</span><span class="s2"> features"</span> <span class="o">%</span> <span class="n">n</span><span class="p">)</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">generate_dataset</span><span class="p">(</span><span class="n">n_train</span><span class="p">,</span> <span class="n">n_test</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span>
<span class="k">for</span> <span class="n">cls_name</span><span class="p">,</span> <span class="n">estimator</span> <span class="ow">in</span> <span class="n">estimators</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">estimator</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<a href="https://docs.python.org/3/library/gc.html#gc.collect" title="gc.collect" class="sphx-glr-backref-module-gc sphx-glr-backref-type-py-function"><span class="n">gc</span><span class="o">.</span><span class="n">collect</span></a><span class="p">()</span>
<span class="n">runtimes</span> <span class="o">=</span> <span class="n">bulk_benchmark_estimator</span><span class="p">(</span><span class="n">estimator</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="mi">30</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">percentiles</span><span class="p">[</span><span class="n">cls_name</span><span class="p">][</span><span class="n">n</span><span class="p">]</span> <span class="o">=</span> <span class="mf">1e6</span> <span class="o">*</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile" title="numpy.percentile" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">percentile</span></a><span class="p">(</span><span class="n">runtimes</span><span class="p">,</span> <span class="n">percentile</span><span class="p">)</span>
<span class="k">return</span> <span class="n">percentiles</span>
<span class="k">def</span> <span class="nf">plot_n_features_influence</span><span class="p">(</span><span class="n">percentiles</span><span class="p">,</span> <span class="n">percentile</span><span class="p">):</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots" title="matplotlib.pyplot.subplots" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">subplots</span></a><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">6</span><span class="p">))</span>
<span class="n">colors</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"r"</span><span class="p">,</span> <span class="s2">"g"</span><span class="p">,</span> <span class="s2">"b"</span><span class="p">]</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">cls_name</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">percentiles</span><span class="o">.</span><span class="n">keys</span><span class="p">()):</span>
<span class="n">x</span> <span class="o">=</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array" title="numpy.array" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">array</span></a><span class="p">(</span><span class="nb">sorted</span><span class="p">([</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">percentiles</span><span class="p">[</span><span class="n">cls_name</span><span class="p">]</span><span class="o">.</span><span class="n">keys</span><span class="p">()]))</span>
<span class="n">y</span> <span class="o">=</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array" title="numpy.array" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">array</span></a><span class="p">([</span><span class="n">percentiles</span><span class="p">[</span><span class="n">cls_name</span><span class="p">][</span><span class="n">n</span><span class="p">]</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">x</span><span class="p">])</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot" title="matplotlib.pyplot.plot" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">plot</span></a><span class="p">(</span>
<span class="n">x</span><span class="p">,</span>
<span class="n">y</span><span class="p">,</span>
<span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">[</span><span class="n">i</span><span class="p">],</span>
<span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">yaxis</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="kc">True</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s2">"-"</span><span class="p">,</span> <span class="n">which</span><span class="o">=</span><span class="s2">"major"</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s2">"lightgrey"</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_axisbelow</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s2">"Evolution of Prediction Time with #Features"</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s2">"#Features"</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">"Prediction Time at </span><span class="si">%d%%</span><span class="s2">-ile (us)"</span> <span class="o">%</span> <span class="n">percentile</span><span class="p">)</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show" title="matplotlib.pyplot.show" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
<span class="k">def</span> <span class="nf">benchmark_throughputs</span><span class="p">(</span><span class="n">configuration</span><span class="p">,</span> <span class="n">duration_secs</span><span class="o">=</span><span class="mf">0.1</span><span class="p">):</span>
<span class="w"> </span><span class="sd">"""benchmark throughput for different estimators."""</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">generate_dataset</span><span class="p">(</span>
<span class="n">configuration</span><span class="p">[</span><span class="s2">"n_train"</span><span class="p">],</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"n_test"</span><span class="p">],</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"n_features"</span><span class="p">]</span>
<span class="p">)</span>
<span class="n">throughputs</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">()</span>
<span class="k">for</span> <span class="n">estimator_config</span> <span class="ow">in</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"estimators"</span><span class="p">]:</span>
<span class="n">estimator_config</span><span class="p">[</span><span class="s2">"instance"</span><span class="p">]</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="n">start_time</span> <span class="o">=</span> <a href="https://docs.python.org/3/library/time.html#time.time" title="time.time" class="sphx-glr-backref-module-time sphx-glr-backref-type-py-function"><span class="n">time</span><span class="o">.</span><span class="n">time</span></a><span class="p">()</span>
<span class="n">n_predictions</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">while</span> <span class="p">(</span><a href="https://docs.python.org/3/library/time.html#time.time" title="time.time" class="sphx-glr-backref-module-time sphx-glr-backref-type-py-function"><span class="n">time</span><span class="o">.</span><span class="n">time</span></a><span class="p">()</span> <span class="o">-</span> <span class="n">start_time</span><span class="p">)</span> <span class="o"><</span> <span class="n">duration_secs</span><span class="p">:</span>
<span class="n">estimator_config</span><span class="p">[</span><span class="s2">"instance"</span><span class="p">]</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">[[</span><span class="mi">0</span><span class="p">]])</span>
<span class="n">n_predictions</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="n">throughputs</span><span class="p">[</span><span class="n">estimator_config</span><span class="p">[</span><span class="s2">"name"</span><span class="p">]]</span> <span class="o">=</span> <span class="n">n_predictions</span> <span class="o">/</span> <span class="n">duration_secs</span>
<span class="k">return</span> <span class="n">throughputs</span>
<span class="k">def</span> <span class="nf">plot_benchmark_throughput</span><span class="p">(</span><span class="n">throughputs</span><span class="p">,</span> <span class="n">configuration</span><span class="p">):</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots" title="matplotlib.pyplot.subplots" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">subplots</span></a><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">6</span><span class="p">))</span>
<span class="n">colors</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"r"</span><span class="p">,</span> <span class="s2">"g"</span><span class="p">,</span> <span class="s2">"b"</span><span class="p">]</span>
<span class="n">cls_infos</span> <span class="o">=</span> <span class="p">[</span>
<span class="s2">"</span><span class="si">%s</span><span class="se">\n</span><span class="s2">(</span><span class="si">%d</span><span class="s2"> </span><span class="si">%s</span><span class="s2">)"</span>
<span class="o">%</span> <span class="p">(</span>
<span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"name"</span><span class="p">],</span>
<span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"complexity_computer"</span><span class="p">](</span><span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"instance"</span><span class="p">]),</span>
<span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"complexity_label"</span><span class="p">],</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">estimator_conf</span> <span class="ow">in</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"estimators"</span><span class="p">]</span>
<span class="p">]</span>
<span class="n">cls_values</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">throughputs</span><span class="p">[</span><span class="n">estimator_conf</span><span class="p">[</span><span class="s2">"name"</span><span class="p">]]</span>
<span class="k">for</span> <span class="n">estimator_conf</span> <span class="ow">in</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"estimators"</span><span class="p">]</span>
<span class="p">]</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html#matplotlib.pyplot.bar" title="matplotlib.pyplot.bar" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">bar</span></a><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">throughputs</span><span class="p">)),</span> <span class="n">cls_values</span><span class="p">,</span> <span class="n">width</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xticks</span><span class="p">(</span><a href="https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace" title="numpy.linspace" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">linspace</span></a><span class="p">(</span><span class="mf">0.25</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">throughputs</span><span class="p">)</span> <span class="o">-</span> <span class="mf">0.75</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">throughputs</span><span class="p">)))</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">(</span><span class="n">cls_infos</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="n">ymax</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">cls_values</span><span class="p">)</span> <span class="o">*</span> <span class="mf">1.2</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">((</span><span class="mi">0</span><span class="p">,</span> <span class="n">ymax</span><span class="p">))</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">"Throughput (predictions/sec)"</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span>
<span class="s2">"Prediction Throughput for different estimators (</span><span class="si">%d</span><span class="s2"> features)"</span>
<span class="o">%</span> <span class="n">configuration</span><span class="p">[</span><span class="s2">"n_features"</span><span class="p">]</span>
<span class="p">)</span>
<a href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show" title="matplotlib.pyplot.show" class="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
</pre></div>
</div>
</section>
<section id="benchmark-bulk-atomic-prediction-speed-for-various-regressors">
<h2>Benchmark bulk/atomic prediction speed for various regressors<a class="headerlink" href="#benchmark-bulk-atomic-prediction-speed-for-various-regressors" title="Permalink to this heading">¶</a></h2>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">configuration</span> <span class="o">=</span> <span class="p">{</span>
<span class="s2">"n_train"</span><span class="p">:</span> <span class="nb">int</span><span class="p">(</span><span class="mf">1e3</span><span class="p">),</span>
<span class="s2">"n_test"</span><span class="p">:</span> <span class="nb">int</span><span class="p">(</span><span class="mf">1e2</span><span class="p">),</span>
<span class="s2">"n_features"</span><span class="p">:</span> <span class="nb">int</span><span class="p">(</span><span class="mf">1e2</span><span class="p">),</span>
<span class="s2">"estimators"</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s2">"name"</span><span class="p">:</span> <span class="s2">"Linear Model"</span><span class="p">,</span>
<span class="s2">"instance"</span><span class="p">:</span> <a href="../../modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor" title="sklearn.linear_model.SGDRegressor" class="sphx-glr-backref-module-sklearn-linear_model sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">SGDRegressor</span></a><span class="p">(</span>
<span class="n">penalty</span><span class="o">=</span><span class="s2">"elasticnet"</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span> <span class="n">l1_ratio</span><span class="o">=</span><span class="mf">0.25</span><span class="p">,</span> <span class="n">tol</span><span class="o">=</span><span class="mf">1e-4</span>
<span class="p">),</span>
<span class="s2">"complexity_label"</span><span class="p">:</span> <span class="s2">"non-zero coefficients"</span><span class="p">,</span>
<span class="s2">"complexity_computer"</span><span class="p">:</span> <span class="k">lambda</span> <span class="n">clf</span><span class="p">:</span> <a href="https://numpy.org/doc/stable/reference/generated/numpy.count_nonzero.html#numpy.count_nonzero" title="numpy.count_nonzero" class="sphx-glr-backref-module-numpy sphx-glr-backref-type-py-function"><span class="n">np</span><span class="o">.</span><span class="n">count_nonzero</span></a><span class="p">(</span><span class="n">clf</span><span class="o">.</span><span class="n">coef_</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">{</span>
<span class="s2">"name"</span><span class="p">:</span> <span class="s2">"RandomForest"</span><span class="p">,</span>
<span class="s2">"instance"</span><span class="p">:</span> <a href="../../modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor" title="sklearn.ensemble.RandomForestRegressor" class="sphx-glr-backref-module-sklearn-ensemble sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">RandomForestRegressor</span></a><span class="p">(),</span>
<span class="s2">"complexity_label"</span><span class="p">:</span> <span class="s2">"estimators"</span><span class="p">,</span>
<span class="s2">"complexity_computer"</span><span class="p">:</span> <span class="k">lambda</span> <span class="n">clf</span><span class="p">:</span> <span class="n">clf</span><span class="o">.</span><span class="n">n_estimators</span><span class="p">,</span>
<span class="p">},</span>
<span class="p">{</span>
<span class="s2">"name"</span><span class="p">:</span> <span class="s2">"SVR"</span><span class="p">,</span>
<span class="s2">"instance"</span><span class="p">:</span> <a href="../../modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR" title="sklearn.svm.SVR" class="sphx-glr-backref-module-sklearn-svm sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">SVR</span></a><span class="p">(</span><span class="n">kernel</span><span class="o">=</span><span class="s2">"rbf"</span><span class="p">),</span>
<span class="s2">"complexity_label"</span><span class="p">:</span> <span class="s2">"support vectors"</span><span class="p">,</span>
<span class="s2">"complexity_computer"</span><span class="p">:</span> <span class="k">lambda</span> <span class="n">clf</span><span class="p">:</span> <span class="nb">len</span><span class="p">(</span><span class="n">clf</span><span class="o">.</span><span class="n">support_vectors_</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">],</span>
<span class="p">}</span>
<span class="n">benchmark</span><span class="p">(</span><span class="n">configuration</span><span class="p">)</span>
</pre></div>
</div>
<ul class="sphx-glr-horizontal">
<li><img src="../../_images/sphx_glr_plot_prediction_latency_001.png" srcset="../../_images/sphx_glr_plot_prediction_latency_001.png" alt="Prediction Time per Instance - Atomic, 100 feats." class = "sphx-glr-multi-img"/></li>
<li><img src="../../_images/sphx_glr_plot_prediction_latency_002.png" srcset="../../_images/sphx_glr_plot_prediction_latency_002.png" alt="Prediction Time per Instance - Bulk (100), 100 feats." class = "sphx-glr-multi-img"/></li>
</ul>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>Benchmarking SGDRegressor(alpha=0.01, l1_ratio=0.25, penalty='elasticnet', tol=0.0001)
Benchmarking RandomForestRegressor()
Benchmarking SVR()
</pre></div>
</div>
</section>
<section id="benchmark-n-features-influence-on-prediction-speed">
<h2>Benchmark n_features influence on prediction speed<a class="headerlink" href="#benchmark-n-features-influence-on-prediction-speed" title="Permalink to this heading">¶</a></h2>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">percentile</span> <span class="o">=</span> <span class="mi">90</span>
<span class="n">percentiles</span> <span class="o">=</span> <span class="n">n_feature_influence</span><span class="p">(</span>
<span class="p">{</span><span class="s2">"ridge"</span><span class="p">:</span> <a href="../../modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge" title="sklearn.linear_model.Ridge" class="sphx-glr-backref-module-sklearn-linear_model sphx-glr-backref-type-py-class sphx-glr-backref-instance"><span class="n">Ridge</span></a><span class="p">()},</span>
<span class="n">configuration</span><span class="p">[</span><span class="s2">"n_train"</span><span class="p">],</span>
<span class="n">configuration</span><span class="p">[</span><span class="s2">"n_test"</span><span class="p">],</span>
<span class="p">[</span><span class="mi">100</span><span class="p">,</span> <span class="mi">250</span><span class="p">,</span> <span class="mi">500</span><span class="p">],</span>
<span class="n">percentile</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">plot_n_features_influence</span><span class="p">(</span><span class="n">percentiles</span><span class="p">,</span> <span class="n">percentile</span><span class="p">)</span>
</pre></div>
</div>
<img src="../../_images/sphx_glr_plot_prediction_latency_003.png" srcset="../../_images/sphx_glr_plot_prediction_latency_003.png" alt="Evolution of Prediction Time with #Features" class = "sphx-glr-single-img"/><div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>benchmarking with 100 features
benchmarking with 250 features
benchmarking with 500 features
</pre></div>
</div>
</section>
<section id="benchmark-throughput">
<h2>Benchmark throughput<a class="headerlink" href="#benchmark-throughput" title="Permalink to this heading">¶</a></h2>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">throughputs</span> <span class="o">=</span> <span class="n">benchmark_throughputs</span><span class="p">(</span><span class="n">configuration</span><span class="p">)</span>
<span class="n">plot_benchmark_throughput</span><span class="p">(</span><span class="n">throughputs</span><span class="p">,</span> <span class="n">configuration</span><span class="p">)</span>
</pre></div>
</div>
<img src="../../_images/sphx_glr_plot_prediction_latency_004.png" srcset="../../_images/sphx_glr_plot_prediction_latency_004.png" alt="Prediction Throughput for different estimators (100 features)" class = "sphx-glr-single-img"/><p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 11.945 seconds)</p>
<div class="sphx-glr-footer sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-applications-plot-prediction-latency-py">
<div class="binder-badge docutils container">
<a class="reference external image-reference" href="https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.2.X?urlpath=lab/tree/notebooks/auto_examples/applications/plot_prediction_latency.ipynb"><img alt="Launch binder" src="../../_images/binder_badge_logo8.svg" width="150px" /></a>
</div>
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/5f054219fb38e926537d741fe5832e8c/plot_prediction_latency.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_prediction_latency.py</span></code></a></p>
</div>
<div class="sphx-glr-download sphx-glr-download-jupyter docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/2c8efe31be0d68b7945dbfbff0788dd3/plot_prediction_latency.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">plot_prediction_latency.ipynb</span></code></a></p>
</div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.github.io">Gallery generated by Sphinx-Gallery</a></p>
</section>
</section>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2023, scikit-learn developers (BSD License).
<a href="../../_sources/auto_examples/applications/plot_prediction_latency.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="../../_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script defer data-domain="scikit-learn.org" src="https://views.scientific-python.org/js/script.js">
</script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
var hide_text = 'Hide prompts and outputs';
var show_text = 'Show prompts and outputs';
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
if (jthis.find('.gp').length > 0) {
var button = $('<span class="copybutton">>>></span>');
button.attr('title', hide_text);
button.data('hidden', 'false');
jthis.prepend(button);
}
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
// define the behavior of the button when it's clicked
$('.copybutton').click(function(e){
e.preventDefault();
var button = $(this);
if (button.data('hidden') === 'false') {
// hide the code output
button.parent().find('.go, .gp, .gt').hide();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'hidden');
button.css('text-decoration', 'line-through');
button.attr('title', show_text);
button.data('hidden', 'true');
} else {
// show the code output
button.parent().find('.go, .gp, .gt').show();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'visible');
button.css('text-decoration', 'none');
button.attr('title', hide_text);
button.data('hidden', 'false');
}
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>