-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathminimal_reproducer.html
755 lines (676 loc) · 56.1 KB
/
minimal_reproducer.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta property="og:title" content="Crafting a minimal reproducer for scikit-learn" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/developers/minimal_reproducer.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Whether submitting a bug report, designing a suite of tests, or simply posting a question in the discussions, being able to craft minimal, reproducible examples (or minimal, workable examples) is t..." />
<meta property="og:image" content="https://scikit-learn.org/stable/_static/scikit-learn-logo-small.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Crafting a minimal reproducer for scikit-learn — scikit-learn 1.1.3 documentation</title>
<link rel="canonical" href="http://scikit-learn.org/stable/developers/minimal_reproducer.html" />
<link rel="shortcut icon" href="../_static/favicon.ico"/>
<link rel="stylesheet" href="../_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/plot_directive.css" type="text/css" />
<link rel="stylesheet" href="../_static/sg_gallery.css" type="text/css" />
<link rel="stylesheet" href="../_static/sg_gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../_static/sg_gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../_static/sg_gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="../index.html">
<img
class="sk-brand-img"
src="../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../modules/classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../auto_examples/index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../getting_started.html" >Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../tutorial/index.html" >Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../whats_new/v1.1.html" >What's new</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../glossary.html" >Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../faq.html" >FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../support.html" >Support</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../related_projects.html" >Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../roadmap.html" >Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../about.html" >About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="../getting_started.html" >Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../tutorial/index.html" >Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../whats_new/v1.1.html" >What's new</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../glossary.html" >Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../faq.html" >FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../support.html" >Support</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../related_projects.html" >Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../roadmap.html" >Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../about.html" >About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="../search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="sk-sidebar-toc-logo">
<a href="../index.html">
<img
class="sk-brand-img"
src="../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
</div>
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="contributing.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Contributing">Prev</a><a href="index.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Developer’s Guide">Up</a>
<a href="develop.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Developing scikit-learn estimators">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 1.1.3</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li><a class="reference internal" href="#">Crafting a minimal reproducer for scikit-learn</a><ul>
<li><a class="reference internal" href="#good-practices">Good practices</a><ul>
<li><a class="reference internal" href="#provide-a-failing-code-example-with-minimal-comments">Provide a failing code example with minimal comments</a></li>
<li><a class="reference internal" href="#boil-down-your-script-to-something-as-small-as-possible">Boil down your script to something as small as possible</a></li>
<li><a class="reference internal" href="#do-not-report-your-data-unless-it-is-extremely-necessary"><strong>DO NOT</strong> report your data unless it is extremely necessary</a></li>
<li><a class="reference internal" href="#use-markdown-formatting">Use markdown formatting</a></li>
</ul>
</li>
<li><a class="reference internal" href="#synthetic-dataset">Synthetic dataset</a><ul>
<li><a class="reference internal" href="#numpy">NumPy</a></li>
<li><a class="reference internal" href="#pandas">Pandas</a></li>
<li><a class="reference internal" href="#make-regression"><code class="docutils literal notranslate"><span class="pre">make_regression</span></code></a></li>
<li><a class="reference internal" href="#make-classification"><code class="docutils literal notranslate"><span class="pre">make_classification</span></code></a></li>
<li><a class="reference internal" href="#make-blobs"><code class="docutils literal notranslate"><span class="pre">make_blobs</span></code></a></li>
<li><a class="reference internal" href="#dataset-loading-utilities">Dataset loading utilities</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<section id="crafting-a-minimal-reproducer-for-scikit-learn">
<span id="minimal-reproducer"></span><h1>Crafting a minimal reproducer for scikit-learn<a class="headerlink" href="#crafting-a-minimal-reproducer-for-scikit-learn" title="Permalink to this heading">¶</a></h1>
<p>Whether submitting a bug report, designing a suite of tests, or simply posting a
question in the discussions, being able to craft minimal, reproducible examples
(or minimal, workable examples) is the key to communicating effectively and
efficiently with the community.</p>
<p>There are very good guidelines on the internet such as <a class="reference external" href="https://stackoverflow.com/help/mcve">this StackOverflow
document</a> or <a class="reference external" href="https://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports">this blogpost by Matthew
Rocklin</a>
on crafting Minimal Complete Verifiable Examples (referred below as MCVE).
Our goal is not to be repetitive with those references but rather to provide a
step-by-step guide on how to narrow down a bug until you have reached the
shortest possible code to reproduce it.</p>
<p>The first step before submitting a bug report to scikit-learn is to read the
<a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/main/.github/ISSUE_TEMPLATE/bug_report.yml">Issue template</a>.
It is already quite informative about the information you will be asked to
provide.</p>
<section id="good-practices">
<span id="id1"></span><h2>Good practices<a class="headerlink" href="#good-practices" title="Permalink to this heading">¶</a></h2>
<p>In this section we will focus on the <strong>Steps/Code to Reproduce</strong> section of the
<a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/main/.github/ISSUE_TEMPLATE/bug_report.yml">Issue template</a>.
We will start with a snippet of code that already provides a failing example but
that has room for readability improvement. We then craft a MCVE from it.</p>
<p><strong>Example</strong></p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># I am currently working in a ML project and when I tried to fit a</span>
<span class="c1"># GradientBoostingRegressor instance to my_data.csv I get a UserWarning:</span>
<span class="c1"># "X has feature names, but DecisionTreeRegressor was fitted without</span>
<span class="c1"># feature names". You can get a copy of my dataset from</span>
<span class="c1"># https://example.com/my_data.csv and verify my features do have</span>
<span class="c1"># names. The problem seems to arise during fit when I pass an integer</span>
<span class="c1"># to the n_iter_no_change parameter.</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">'my_data.csv'</span><span class="p">)</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">df</span><span class="p">[[</span><span class="s2">"feature_name"</span><span class="p">]]</span> <span class="c1"># my features do have names</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">"target"</span><span class="p">]</span>
<span class="c1"># We set random_state=42 for the train_test_split</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.33</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">42</span>
<span class="p">)</span>
<span class="n">scaler</span> <span class="o">=</span> <span class="n">StandardScaler</span><span class="p">(</span><span class="n">with_mean</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">X_train</span> <span class="o">=</span> <span class="n">scaler</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">X_train</span><span class="p">)</span>
<span class="n">X_test</span> <span class="o">=</span> <span class="n">scaler</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="c1"># An instance with default n_iter_no_change raises no error nor warnings</span>
<span class="n">gbdt</span> <span class="o">=</span> <span class="n">GradientBoostingRegressor</span><span class="p">(</span><span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">gbdt</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="n">default_score</span> <span class="o">=</span> <span class="n">gbdt</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">)</span>
<span class="c1"># the bug appears when I change the value for n_iter_no_change</span>
<span class="n">gbdt</span> <span class="o">=</span> <span class="n">GradientBoostingRegressor</span><span class="p">(</span><span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">n_iter_no_change</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="n">gbdt</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="n">other_score</span> <span class="o">=</span> <span class="n">gbdt</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">)</span>
<span class="n">other_score</span> <span class="o">=</span> <span class="n">gbdt</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">)</span>
</pre></div>
</div>
<section id="provide-a-failing-code-example-with-minimal-comments">
<h3>Provide a failing code example with minimal comments<a class="headerlink" href="#provide-a-failing-code-example-with-minimal-comments" title="Permalink to this heading">¶</a></h3>
<p>Writing instructions to reproduce the problem in English is often ambiguous.
Better make sure that all the necessary details to reproduce the problem are
illustrated in the Python code snippet to avoid any ambiguity. Besides, by this
point you already provided a concise description in the <strong>Describe the bug</strong>
section of the <a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/main/.github/ISSUE_TEMPLATE/bug_report.yml">Issue template</a>.</p>
<p>The following code, while <strong>still not minimal</strong>, is already <strong>much better</strong>
because it can be copy-pasted in a Python terminal to reproduce the problem in
one step. In particular:</p>
<blockquote>
<div><ul class="simple">
<li><p>it contains <strong>all necessary imports statements</strong>;</p></li>
<li><p>it can fetch the public dataset without having to manually download a
file and put it in the expected location on the disk.</p></li>
</ul>
</div></blockquote>
<p><strong>Improved example</strong></p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">"https://example.com/my_data.csv"</span><span class="p">)</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">df</span><span class="p">[[</span><span class="s2">"feature_name"</span><span class="p">]]</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">"target"</span><span class="p">]</span>
<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="kn">import</span> <span class="n">train_test_split</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.33</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">42</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">sklearn.preprocessing</span> <span class="kn">import</span> <span class="n">StandardScaler</span>
<span class="n">scaler</span> <span class="o">=</span> <span class="n">StandardScaler</span><span class="p">(</span><span class="n">with_mean</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">X_train</span> <span class="o">=</span> <span class="n">scaler</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">X_train</span><span class="p">)</span>
<span class="n">X_test</span> <span class="o">=</span> <span class="n">scaler</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <span class="n">GradientBoostingRegressor</span>
<span class="n">gbdt</span> <span class="o">=</span> <span class="n">GradientBoostingRegressor</span><span class="p">(</span><span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">gbdt</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span> <span class="c1"># no warning</span>
<span class="n">default_score</span> <span class="o">=</span> <span class="n">gbdt</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">)</span>
<span class="n">gbdt</span> <span class="o">=</span> <span class="n">GradientBoostingRegressor</span><span class="p">(</span><span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">n_iter_no_change</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="n">gbdt</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span> <span class="c1"># raises warning</span>
<span class="n">other_score</span> <span class="o">=</span> <span class="n">gbdt</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">)</span>
<span class="n">other_score</span> <span class="o">=</span> <span class="n">gbdt</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="boil-down-your-script-to-something-as-small-as-possible">
<h3>Boil down your script to something as small as possible<a class="headerlink" href="#boil-down-your-script-to-something-as-small-as-possible" title="Permalink to this heading">¶</a></h3>
<p>You have to ask yourself which lines of code are relevant and which are not for
reproducing the bug. Deleting unnecessary lines of code or simplifying the
function calls by omitting unrelated non-default options will help you and other
contributors narrow down the cause of the bug.</p>
<p>In particular, for this specific example:</p>
<ul class="simple">
<li><p>the warning has nothing to do with the <code class="docutils literal notranslate"><span class="pre">train_test_split</span></code> since it already
appears in the training step, before we use the test set.</p></li>
<li><p>similarly, the lines that compute the scores on the test set are not
necessary;</p></li>
<li><p>the bug can be reproduced for any value of <code class="docutils literal notranslate"><span class="pre">random_state</span></code> so leave it to its
default;</p></li>
<li><p>the bug can be reproduced without preprocessing the data with the
<code class="docutils literal notranslate"><span class="pre">StandardScaler</span></code>.</p></li>
</ul>
<p><strong>Improved example</strong></p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">"https://example.com/my_data.csv"</span><span class="p">)</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">df</span><span class="p">[[</span><span class="s2">"feature_name"</span><span class="p">]]</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">"target"</span><span class="p">]</span>
<span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <span class="n">GradientBoostingRegressor</span>
<span class="n">gbdt</span> <span class="o">=</span> <span class="n">GradientBoostingRegressor</span><span class="p">()</span>
<span class="n">gbdt</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> <span class="c1"># no warning</span>
<span class="n">gbdt</span> <span class="o">=</span> <span class="n">GradientBoostingRegressor</span><span class="p">(</span><span class="n">n_iter_no_change</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="n">gbdt</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> <span class="c1"># raises warning</span>
</pre></div>
</div>
</section>
<section id="do-not-report-your-data-unless-it-is-extremely-necessary">
<h3><strong>DO NOT</strong> report your data unless it is extremely necessary<a class="headerlink" href="#do-not-report-your-data-unless-it-is-extremely-necessary" title="Permalink to this heading">¶</a></h3>
<p>The idea is to make the code as self-contained as possible. For doing so, you
can use a <a class="reference internal" href="#synth-data"><span class="std std-ref">Synthetic dataset</span></a>. It can be generated using numpy, pandas or the
<a class="reference internal" href="../modules/classes.html#module-sklearn.datasets" title="sklearn.datasets"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.datasets</span></code></a> module. Most of the times the bug is not related to a
particular structure of your data. Even if it is, try to find an available
dataset that has similar characteristics to yours and that reproduces the
problem. In this particular case, we are interested in data that has labeled
feature names.</p>
<p><strong>Improved example</strong></p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <span class="n">GradientBoostingRegressor</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span>
<span class="p">{</span>
<span class="s2">"feature_name"</span><span class="p">:</span> <span class="p">[</span><span class="o">-</span><span class="mf">12.32</span><span class="p">,</span> <span class="mf">1.43</span><span class="p">,</span> <span class="mf">30.01</span><span class="p">,</span> <span class="mf">22.17</span><span class="p">],</span>
<span class="s2">"target"</span><span class="p">:</span> <span class="p">[</span><span class="mi">72</span><span class="p">,</span> <span class="mi">55</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">43</span><span class="p">],</span>
<span class="p">}</span>
<span class="p">)</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">df</span><span class="p">[[</span><span class="s2">"feature_name"</span><span class="p">]]</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">"target"</span><span class="p">]</span>
<span class="n">gbdt</span> <span class="o">=</span> <span class="n">GradientBoostingRegressor</span><span class="p">()</span>
<span class="n">gbdt</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> <span class="c1"># no warning</span>
<span class="n">gbdt</span> <span class="o">=</span> <span class="n">GradientBoostingRegressor</span><span class="p">(</span><span class="n">n_iter_no_change</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="n">gbdt</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> <span class="c1"># raises warning</span>
</pre></div>
</div>
<p>As already mentioned, the key to communication is the readability of the code
and good formatting can really be a plus. Notice that in the previous snippet
we:</p>
<blockquote>
<div><ul class="simple">
<li><p>try to limit all lines to a maximum of 79 characters to avoid horizontal
scrollbars in the code snippets blocks rendered on the GitHub issue;</p></li>
<li><p>use blank lines to separate groups of related functions;</p></li>
<li><p>place all the imports in their own group at the beginning.</p></li>
</ul>
</div></blockquote>
<p>The simplification steps presented in this guide can be implemented in a
different order than the progression we have shown here. The important points
are:</p>
<blockquote>
<div><ul class="simple">
<li><p>a minimal reproducer should be runnable by a simple copy-and-paste in a
python terminal;</p></li>
<li><p>it should be simplified as much as possible by removing any code steps
that are not strictly needed to reproducing the original problem;</p></li>
<li><p>it should ideally only rely on a minimal dataset generated on-the-fly by
running the code instead of relying on external data, if possible.</p></li>
</ul>
</div></blockquote>
</section>
<section id="use-markdown-formatting">
<h3>Use markdown formatting<a class="headerlink" href="#use-markdown-formatting" title="Permalink to this heading">¶</a></h3>
<p>To format code or text into its own distinct block, use triple backticks.
<a class="reference external" href="https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax">Markdown</a>
supports an optional language identifier to enable syntax highlighting in your
fenced code block. For example:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>```python
from sklearn.datasets import make_blobs
n_samples = 100
n_components = 3
X, y = make_blobs(n_samples=n_samples, centers=n_components)
```
</pre></div>
</div>
<p>will render a python formatted snippet as follows</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">make_blobs</span>
<span class="n">n_samples</span> <span class="o">=</span> <span class="mi">100</span>
<span class="n">n_components</span> <span class="o">=</span> <span class="mi">3</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">make_blobs</span><span class="p">(</span><span class="n">n_samples</span><span class="o">=</span><span class="n">n_samples</span><span class="p">,</span> <span class="n">centers</span><span class="o">=</span><span class="n">n_components</span><span class="p">)</span>
</pre></div>
</div>
<p>It is not necessary to create several blocks of code when submitting a bug
report. Remember other reviewers are going to copy-paste your code and having a
single cell will make their task easier.</p>
<p>In the section named <strong>Actual results</strong> of the <a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/main/.github/ISSUE_TEMPLATE/bug_report.yml">Issue template</a>
you are asked to provide the error message including the full traceback of the
exception. In this case, use the <code class="docutils literal notranslate"><span class="pre">python-traceback</span></code> qualifier. For example:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>```python-traceback
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-1-a674e682c281> in <module>
4 vectorizer = CountVectorizer(input=docs, analyzer='word')
5 lda_features = vectorizer.fit_transform(docs)
----> 6 lda_model = LatentDirichletAllocation(
7 n_topics=10,
8 learning_method='online',
TypeError: __init__() got an unexpected keyword argument 'n_topics'
```
</pre></div>
</div>
<p>yields the following when rendered:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="o">---------------------------------------------------------------------------</span>
<span class="ne">TypeError</span> <span class="n">Traceback</span> <span class="p">(</span><span class="n">most</span> <span class="n">recent</span> <span class="n">call</span> <span class="n">last</span><span class="p">)</span>
<span class="o"><</span><span class="n">ipython</span><span class="o">-</span><span class="nb">input</span><span class="o">-</span><span class="mi">1</span><span class="o">-</span><span class="n">a674e682c281</span><span class="o">></span> <span class="ow">in</span> <span class="o"><</span><span class="n">module</span><span class="o">></span>
<span class="mi">4</span> <span class="n">vectorizer</span> <span class="o">=</span> <span class="n">CountVectorizer</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">docs</span><span class="p">,</span> <span class="n">analyzer</span><span class="o">=</span><span class="s1">'word'</span><span class="p">)</span>
<span class="mi">5</span> <span class="n">lda_features</span> <span class="o">=</span> <span class="n">vectorizer</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">docs</span><span class="p">)</span>
<span class="o">----></span> <span class="mi">6</span> <span class="n">lda_model</span> <span class="o">=</span> <span class="n">LatentDirichletAllocation</span><span class="p">(</span>
<span class="mi">7</span> <span class="n">n_topics</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="mi">8</span> <span class="n">learning_method</span><span class="o">=</span><span class="s1">'online'</span><span class="p">,</span>
<span class="ne">TypeError</span><span class="p">:</span> <span class="fm">__init__</span><span class="p">()</span> <span class="n">got</span> <span class="n">an</span> <span class="n">unexpected</span> <span class="n">keyword</span> <span class="n">argument</span> <span class="s1">'n_topics'</span>
</pre></div>
</div>
</section>
</section>
<section id="synthetic-dataset">
<span id="synth-data"></span><h2>Synthetic dataset<a class="headerlink" href="#synthetic-dataset" title="Permalink to this heading">¶</a></h2>
<p>Before choosing a particular synthetic dataset, first you have to identify the
type of problem you are solving: Is it a classification, a regression,
a clustering, etc?</p>
<p>Once that you narrowed down the type of problem, you need to provide a synthetic
dataset accordingly. Most of the times you only need a minimalistic dataset.
Here is a non-exhaustive list of tools that may help you.</p>
<section id="numpy">
<h3>NumPy<a class="headerlink" href="#numpy" title="Permalink to this heading">¶</a></h3>
<p>NumPy tools such as <a class="reference external" href="https://numpy.org/doc/stable/reference/random/generated/numpy.random.randn.html">numpy.random.randn</a>
and <a class="reference external" href="https://numpy.org/doc/stable/reference/random/generated/numpy.random.randint.html">numpy.random.randint</a>
can be used to create dummy numeric data.</p>
<ul>
<li><p>regression</p>
<blockquote>
<div><p>Regressions take continuous numeric data as features and target.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="n">rng</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">n_samples</span><span class="p">,</span> <span class="n">n_features</span> <span class="o">=</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">5</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">rng</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">n_samples</span><span class="p">,</span> <span class="n">n_features</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">rng</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">n_samples</span><span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
</li>
</ul>
<p>A similar snippet can be used as synthetic data when testing scaling tools such
as <a class="reference internal" href="../modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler" title="sklearn.preprocessing.StandardScaler"><code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.preprocessing.StandardScaler</span></code></a>.</p>
<ul>
<li><p>classification</p>
<blockquote>
<div><p>If the bug is not raised during when encoding a categorical variable, you can
feed numeric data to a classifier. Just remember to ensure that the target
is indeed an integer.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="n">rng</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">n_samples</span><span class="p">,</span> <span class="n">n_features</span> <span class="o">=</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">5</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">rng</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">n_samples</span><span class="p">,</span> <span class="n">n_features</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">rng</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)</span> <span class="c1"># binary target with values in {0, 1}</span>
</pre></div>
</div>
<p>If the bug only happens with non-numeric class labels, you might want to
generate a random target with <a class="reference external" href="https://numpy.org/doc/stable/reference/random/generated/numpy.random.choice.html">numpy.random.choice</a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="n">rng</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">n_samples</span><span class="p">,</span> <span class="n">n_features</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">5</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">rng</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">n_samples</span><span class="p">,</span> <span class="n">n_features</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span>
<span class="p">[</span><span class="s2">"male"</span><span class="p">,</span> <span class="s2">"female"</span><span class="p">,</span> <span class="s2">"other"</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="n">n_samples</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="p">[</span><span class="mf">0.49</span><span class="p">,</span> <span class="mf">0.49</span><span class="p">,</span> <span class="mf">0.02</span><span class="p">]</span>
<span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
</li>
</ul>
</section>
<section id="pandas">
<h3>Pandas<a class="headerlink" href="#pandas" title="Permalink to this heading">¶</a></h3>
<p>Some scikit-learn objects expect pandas dataframes as input. In this case you can
transform numpy arrays into pandas objects using <a class="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html">pandas.DataFrame</a>, or
<a class="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.Series.html">pandas.Series</a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="n">rng</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">RandomState</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">n_samples</span><span class="p">,</span> <span class="n">n_features</span> <span class="o">=</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">5</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span>
<span class="p">{</span>
<span class="s2">"continuous_feature"</span><span class="p">:</span> <span class="n">rng</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">n_samples</span><span class="p">),</span>
<span class="s2">"positive_feature"</span><span class="p">:</span> <span class="n">rng</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="n">low</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">high</span><span class="o">=</span><span class="mf">100.0</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">n_samples</span><span class="p">),</span>
<span class="s2">"categorical_feature"</span><span class="p">:</span> <span class="n">rng</span><span class="o">.</span><span class="n">choice</span><span class="p">([</span><span class="s2">"a"</span><span class="p">,</span> <span class="s2">"b"</span><span class="p">,</span> <span class="s2">"c"</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="n">n_samples</span><span class="p">),</span>
<span class="p">}</span>
<span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">rng</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">n_samples</span><span class="p">))</span>
</pre></div>
</div>
<p>In addition, scikit-learn includes various <a class="reference internal" href="../datasets/sample_generators.html#sample-generators"><span class="std std-ref">Generated datasets</span></a> that can be
used to build artificial datasets of controlled size and complexity.</p>
</section>
<section id="make-regression">
<h3><code class="docutils literal notranslate"><span class="pre">make_regression</span></code><a class="headerlink" href="#make-regression" title="Permalink to this heading">¶</a></h3>
<p>As hinted by the name, <a class="reference internal" href="../modules/generated/sklearn.datasets.make_regression.html#sklearn.datasets.make_regression" title="sklearn.datasets.make_regression"><code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.datasets.make_regression</span></code></a> produces
regression targets with noise as an optionally-sparse random linear combination
of random features.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">make_regression</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">make_regression</span><span class="p">(</span><span class="n">n_samples</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">n_features</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="make-classification">
<h3><code class="docutils literal notranslate"><span class="pre">make_classification</span></code><a class="headerlink" href="#make-classification" title="Permalink to this heading">¶</a></h3>
<p><a class="reference internal" href="../modules/generated/sklearn.datasets.make_classification.html#sklearn.datasets.make_classification" title="sklearn.datasets.make_classification"><code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.datasets.make_classification</span></code></a> creates multiclass datasets with multiple Gaussian
clusters per class. Noise can be introduced by means of correlated, redundant or
uninformative features.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">make_classification</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">make_classification</span><span class="p">(</span>
<span class="n">n_features</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">n_redundant</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">n_informative</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">n_clusters_per_class</span><span class="o">=</span><span class="mi">1</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
<section id="make-blobs">
<h3><code class="docutils literal notranslate"><span class="pre">make_blobs</span></code><a class="headerlink" href="#make-blobs" title="Permalink to this heading">¶</a></h3>
<p>Similarly to <code class="docutils literal notranslate"><span class="pre">make_classification</span></code>, <a class="reference internal" href="../modules/generated/sklearn.datasets.make_blobs.html#sklearn.datasets.make_blobs" title="sklearn.datasets.make_blobs"><code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.datasets.make_blobs</span></code></a> creates
multiclass datasets using normally-distributed clusters of points. It provides
greater control regarding the centers and standard deviations of each cluster,
and therefore it is useful to demonstrate clustering.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">make_blobs</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">make_blobs</span><span class="p">(</span><span class="n">n_samples</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">centers</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">n_features</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="dataset-loading-utilities">
<h3>Dataset loading utilities<a class="headerlink" href="#dataset-loading-utilities" title="Permalink to this heading">¶</a></h3>
<p>You can use the <a class="reference internal" href="../datasets.html#datasets"><span class="std std-ref">Dataset loading utilities</span></a> to load and fetch several popular reference
datasets. This option is useful when the bug relates to the particular structure
of the data, e.g. dealing with missing values or image recognition.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">load_breast_cancer</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">load_breast_cancer</span><span class="p">(</span><span class="n">return_X_y</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
</section>
</section>
</section>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2022, scikit-learn developers (BSD License).
<a href="../_sources/developers/minimal_reproducer.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="../_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
var hide_text = 'Hide prompts and outputs';
var show_text = 'Show prompts and outputs';
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
if (jthis.find('.gp').length > 0) {
var button = $('<span class="copybutton">>>></span>');
button.attr('title', hide_text);
button.data('hidden', 'false');
jthis.prepend(button);
}
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
// define the behavior of the button when it's clicked
$('.copybutton').click(function(e){
e.preventDefault();
var button = $(this);
if (button.data('hidden') === 'false') {
// hide the code output
button.parent().find('.go, .gp, .gt').hide();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'hidden');
button.css('text-decoration', 'line-through');
button.attr('title', show_text);
button.data('hidden', 'true');
} else {
// show the code output
button.parent().find('.go, .gp, .gt').show();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'visible');
button.css('text-decoration', 'none');
button.attr('title', hide_text);
button.data('hidden', 'false');
}
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
/*** Hide navbar when scrolling down ***/
// Returns true when headerlink target matches hash in url
(function() {
hashTargetOnTop = function() {
var hash = window.location.hash;
if ( hash.length < 2 ) { return false; }
var target = document.getElementById( hash.slice(1) );
if ( target === null ) { return false; }
var top = target.getBoundingClientRect().top;
return (top < 2) && (top > -2);
};
// Hide navbar on load if hash target is on top
var navBar = document.getElementById("navbar");
var navBarToggler = document.getElementById("sk-navbar-toggler");
var navBarHeightHidden = "-" + navBar.getBoundingClientRect().height + "px";
var $window = $(window);
hideNavBar = function() {
navBar.style.top = navBarHeightHidden;
};
showNavBar = function() {
navBar.style.top = "0";
}
if (hashTargetOnTop()) {
hideNavBar()
}
var prevScrollpos = window.pageYOffset;
hideOnScroll = function(lastScrollTop) {
if (($window.width() < 768) && (navBarToggler.getAttribute("aria-expanded") === 'true')) {
return;
}
if (lastScrollTop > 2 && (prevScrollpos <= lastScrollTop) || hashTargetOnTop()){
hideNavBar()
} else {
showNavBar()
}
prevScrollpos = lastScrollTop;
};
/*** high performance scroll event listener***/
var raf = window.requestAnimationFrame ||
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.msRequestAnimationFrame ||
window.oRequestAnimationFrame;
var lastScrollTop = $window.scrollTop();
if (raf) {
loop();
}
function loop() {
var scrollTop = $window.scrollTop();
if (lastScrollTop === scrollTop) {
raf(loop);
return;
} else {
lastScrollTop = scrollTop;
hideOnScroll(lastScrollTop);
raf(loop);
}
}
})();
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>