orphan: |
---|
These examples illustrate the main features of the releases of scikit-learn.
.. only:: html
.. image:: /auto_examples/release_highlights/images/thumb/sphx_glr_plot_release_highlights_1_1_0_thumb.png
:alt: Release Highlights for scikit-learn 1.1
:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_1_0.py`
.. only:: html
.. image:: /auto_examples/release_highlights/images/thumb/sphx_glr_plot_release_highlights_1_0_0_thumb.png
:alt: Release Highlights for scikit-learn 1.0
:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_0_0.py`
.. only:: html
.. image:: /auto_examples/release_highlights/images/thumb/sphx_glr_plot_release_highlights_0_24_0_thumb.png
:alt: Release Highlights for scikit-learn 0.24
:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_0_24_0.py`
.. only:: html
.. image:: /auto_examples/release_highlights/images/thumb/sphx_glr_plot_release_highlights_0_23_0_thumb.png
:alt: Release Highlights for scikit-learn 0.23
:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_0_23_0.py`
.. only:: html
.. image:: /auto_examples/release_highlights/images/thumb/sphx_glr_plot_release_highlights_0_22_0_thumb.png
:alt: Release Highlights for scikit-learn 0.22
:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_0_22_0.py`
Examples concerning the :mod:`sklearn.cluster.bicluster` module.
.. only:: html
.. image:: /auto_examples/bicluster/images/thumb/sphx_glr_plot_spectral_biclustering_thumb.png
:alt: A demo of the Spectral Biclustering algorithm
:ref:`sphx_glr_auto_examples_bicluster_plot_spectral_biclustering.py`
.. only:: html
.. image:: /auto_examples/bicluster/images/thumb/sphx_glr_plot_spectral_coclustering_thumb.png
:alt: A demo of the Spectral Co-Clustering algorithm
:ref:`sphx_glr_auto_examples_bicluster_plot_spectral_coclustering.py`
.. only:: html
.. image:: /auto_examples/bicluster/images/thumb/sphx_glr_plot_bicluster_newsgroups_thumb.png
:alt: Biclustering documents with the Spectral Co-clustering algorithm
:ref:`sphx_glr_auto_examples_bicluster_plot_bicluster_newsgroups.py`
Examples illustrating the calibration of predicted probabilities of classifiers.
.. only:: html
.. image:: /auto_examples/calibration/images/thumb/sphx_glr_plot_compare_calibration_thumb.png
:alt: Comparison of Calibration of Classifiers
:ref:`sphx_glr_auto_examples_calibration_plot_compare_calibration.py`
.. only:: html
.. image:: /auto_examples/calibration/images/thumb/sphx_glr_plot_calibration_curve_thumb.png
:alt: Probability Calibration curves
:ref:`sphx_glr_auto_examples_calibration_plot_calibration_curve.py`
.. only:: html
.. image:: /auto_examples/calibration/images/thumb/sphx_glr_plot_calibration_multiclass_thumb.png
:alt: Probability Calibration for 3-class classification
:ref:`sphx_glr_auto_examples_calibration_plot_calibration_multiclass.py`
.. only:: html
.. image:: /auto_examples/calibration/images/thumb/sphx_glr_plot_calibration_thumb.png
:alt: Probability calibration of classifiers
:ref:`sphx_glr_auto_examples_calibration_plot_calibration.py`
General examples about classification algorithms.
.. only:: html
.. image:: /auto_examples/classification/images/thumb/sphx_glr_plot_classifier_comparison_thumb.png
:alt: Classifier comparison
:ref:`sphx_glr_auto_examples_classification_plot_classifier_comparison.py`
.. only:: html
.. image:: /auto_examples/classification/images/thumb/sphx_glr_plot_lda_qda_thumb.png
:alt: Linear and Quadratic Discriminant Analysis with covariance ellipsoid
:ref:`sphx_glr_auto_examples_classification_plot_lda_qda.py`
.. only:: html
.. image:: /auto_examples/classification/images/thumb/sphx_glr_plot_lda_thumb.png
:alt: Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification
:ref:`sphx_glr_auto_examples_classification_plot_lda.py`
.. only:: html
.. image:: /auto_examples/classification/images/thumb/sphx_glr_plot_classification_probability_thumb.png
:alt: Plot classification probability
:ref:`sphx_glr_auto_examples_classification_plot_classification_probability.py`
.. only:: html
.. image:: /auto_examples/classification/images/thumb/sphx_glr_plot_digits_classification_thumb.png
:alt: Recognizing hand-written digits
:ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py`
Examples concerning the :mod:`sklearn.cluster` module.
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_kmeans_digits_thumb.png
:alt: A demo of K-Means clustering on the handwritten digits data
:ref:`sphx_glr_auto_examples_cluster_plot_kmeans_digits.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_coin_ward_segmentation_thumb.png
:alt: A demo of structured Ward hierarchical clustering on an image of coins
:ref:`sphx_glr_auto_examples_cluster_plot_coin_ward_segmentation.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_mean_shift_thumb.png
:alt: A demo of the mean-shift clustering algorithm
:ref:`sphx_glr_auto_examples_cluster_plot_mean_shift.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_adjusted_for_chance_measures_thumb.png
:alt: Adjustment for chance in clustering performance evaluation
:ref:`sphx_glr_auto_examples_cluster_plot_adjusted_for_chance_measures.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_agglomerative_clustering_thumb.png
:alt: Agglomerative clustering with and without structure
:ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_clustering.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_agglomerative_clustering_metrics_thumb.png
:alt: Agglomerative clustering with different metrics
:ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_clustering_metrics.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_kmeans_plusplus_thumb.png
:alt: An example of K-Means++ initialization
:ref:`sphx_glr_auto_examples_cluster_plot_kmeans_plusplus.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_bisect_kmeans_thumb.png
:alt: Bisecting K-Means and Regular K-Means Performance Comparison
:ref:`sphx_glr_auto_examples_cluster_plot_bisect_kmeans.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_color_quantization_thumb.png
:alt: Color Quantization using K-Means
:ref:`sphx_glr_auto_examples_cluster_plot_color_quantization.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_birch_vs_minibatchkmeans_thumb.png
:alt: Compare BIRCH and MiniBatchKMeans
:ref:`sphx_glr_auto_examples_cluster_plot_birch_vs_minibatchkmeans.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_cluster_comparison_thumb.png
:alt: Comparing different clustering algorithms on toy datasets
:ref:`sphx_glr_auto_examples_cluster_plot_cluster_comparison.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_linkage_comparison_thumb.png
:alt: Comparing different hierarchical linkage methods on toy datasets
:ref:`sphx_glr_auto_examples_cluster_plot_linkage_comparison.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_mini_batch_kmeans_thumb.png
:alt: Comparison of the K-Means and MiniBatchKMeans clustering algorithms
:ref:`sphx_glr_auto_examples_cluster_plot_mini_batch_kmeans.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_dbscan_thumb.png
:alt: Demo of DBSCAN clustering algorithm
:ref:`sphx_glr_auto_examples_cluster_plot_dbscan.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_optics_thumb.png
:alt: Demo of OPTICS clustering algorithm
:ref:`sphx_glr_auto_examples_cluster_plot_optics.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_affinity_propagation_thumb.png
:alt: Demo of affinity propagation clustering algorithm
:ref:`sphx_glr_auto_examples_cluster_plot_affinity_propagation.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_kmeans_assumptions_thumb.png
:alt: Demonstration of k-means assumptions
:ref:`sphx_glr_auto_examples_cluster_plot_kmeans_assumptions.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_kmeans_stability_low_dim_dense_thumb.png
:alt: Empirical evaluation of the impact of k-means initialization
:ref:`sphx_glr_auto_examples_cluster_plot_kmeans_stability_low_dim_dense.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_digits_agglomeration_thumb.png
:alt: Feature agglomeration
:ref:`sphx_glr_auto_examples_cluster_plot_digits_agglomeration.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_feature_agglomeration_vs_univariate_selection_thumb.png
:alt: Feature agglomeration vs. univariate selection
:ref:`sphx_glr_auto_examples_cluster_plot_feature_agglomeration_vs_univariate_selection.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_ward_structured_vs_unstructured_thumb.png
:alt: Hierarchical clustering: structured vs unstructured ward
:ref:`sphx_glr_auto_examples_cluster_plot_ward_structured_vs_unstructured.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_inductive_clustering_thumb.png
:alt: Inductive Clustering
:ref:`sphx_glr_auto_examples_cluster_plot_inductive_clustering.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_cluster_iris_thumb.png
:alt: K-means Clustering
:ref:`sphx_glr_auto_examples_cluster_plot_cluster_iris.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_dict_face_patches_thumb.png
:alt: Online learning of a dictionary of parts of faces
:ref:`sphx_glr_auto_examples_cluster_plot_dict_face_patches.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_agglomerative_dendrogram_thumb.png
:alt: Plot Hierarchical Clustering Dendrogram
:ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_dendrogram.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_coin_segmentation_thumb.png
:alt: Segmenting the picture of greek coins in regions
:ref:`sphx_glr_auto_examples_cluster_plot_coin_segmentation.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_kmeans_silhouette_analysis_thumb.png
:alt: Selecting the number of clusters with silhouette analysis on KMeans clustering
:ref:`sphx_glr_auto_examples_cluster_plot_kmeans_silhouette_analysis.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_segmentation_toy_thumb.png
:alt: Spectral clustering for image segmentation
:ref:`sphx_glr_auto_examples_cluster_plot_segmentation_toy.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_digits_linkage_thumb.png
:alt: Various Agglomerative Clustering on a 2D embedding of digits
:ref:`sphx_glr_auto_examples_cluster_plot_digits_linkage.py`
.. only:: html
.. image:: /auto_examples/cluster/images/thumb/sphx_glr_plot_face_compress_thumb.png
:alt: Vector Quantization Example
:ref:`sphx_glr_auto_examples_cluster_plot_face_compress.py`
Examples concerning the :mod:`sklearn.covariance` module.
.. only:: html
.. image:: /auto_examples/covariance/images/thumb/sphx_glr_plot_lw_vs_oas_thumb.png
:alt: Ledoit-Wolf vs OAS estimation
:ref:`sphx_glr_auto_examples_covariance_plot_lw_vs_oas.py`
.. only:: html
.. image:: /auto_examples/covariance/images/thumb/sphx_glr_plot_mahalanobis_distances_thumb.png
:alt: Robust covariance estimation and Mahalanobis distances relevance
:ref:`sphx_glr_auto_examples_covariance_plot_mahalanobis_distances.py`
.. only:: html
.. image:: /auto_examples/covariance/images/thumb/sphx_glr_plot_robust_vs_empirical_covariance_thumb.png
:alt: Robust vs Empirical covariance estimate
:ref:`sphx_glr_auto_examples_covariance_plot_robust_vs_empirical_covariance.py`
.. only:: html
.. image:: /auto_examples/covariance/images/thumb/sphx_glr_plot_covariance_estimation_thumb.png
:alt: Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood
:ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py`
.. only:: html
.. image:: /auto_examples/covariance/images/thumb/sphx_glr_plot_sparse_cov_thumb.png
:alt: Sparse inverse covariance estimation
:ref:`sphx_glr_auto_examples_covariance_plot_sparse_cov.py`
Examples concerning the :mod:`sklearn.cross_decomposition` module.
.. only:: html
.. image:: /auto_examples/cross_decomposition/images/thumb/sphx_glr_plot_compare_cross_decomposition_thumb.png
:alt: Compare cross decomposition methods
:ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py`
.. only:: html
.. image:: /auto_examples/cross_decomposition/images/thumb/sphx_glr_plot_pcr_vs_pls_thumb.png
:alt: Principal Component Regression vs Partial Least Squares Regression
:ref:`sphx_glr_auto_examples_cross_decomposition_plot_pcr_vs_pls.py`
Examples concerning the :mod:`sklearn.datasets` module.
.. only:: html
.. image:: /auto_examples/datasets/images/thumb/sphx_glr_plot_random_dataset_thumb.png
:alt: Plot randomly generated classification dataset
:ref:`sphx_glr_auto_examples_datasets_plot_random_dataset.py`
.. only:: html
.. image:: /auto_examples/datasets/images/thumb/sphx_glr_plot_random_multilabel_dataset_thumb.png
:alt: Plot randomly generated multilabel dataset
:ref:`sphx_glr_auto_examples_datasets_plot_random_multilabel_dataset.py`
.. only:: html
.. image:: /auto_examples/datasets/images/thumb/sphx_glr_plot_digits_last_image_thumb.png
:alt: The Digit Dataset
:ref:`sphx_glr_auto_examples_datasets_plot_digits_last_image.py`
.. only:: html
.. image:: /auto_examples/datasets/images/thumb/sphx_glr_plot_iris_dataset_thumb.png
:alt: The Iris Dataset
:ref:`sphx_glr_auto_examples_datasets_plot_iris_dataset.py`
Examples concerning the :mod:`sklearn.tree` module.
.. only:: html
.. image:: /auto_examples/tree/images/thumb/sphx_glr_plot_tree_regression_thumb.png
:alt: Decision Tree Regression
:ref:`sphx_glr_auto_examples_tree_plot_tree_regression.py`
.. only:: html
.. image:: /auto_examples/tree/images/thumb/sphx_glr_plot_tree_regression_multioutput_thumb.png
:alt: Multi-output Decision Tree Regression
:ref:`sphx_glr_auto_examples_tree_plot_tree_regression_multioutput.py`
.. only:: html
.. image:: /auto_examples/tree/images/thumb/sphx_glr_plot_iris_dtc_thumb.png
:alt: Plot the decision surface of decision trees trained on the iris dataset
:ref:`sphx_glr_auto_examples_tree_plot_iris_dtc.py`
.. only:: html
.. image:: /auto_examples/tree/images/thumb/sphx_glr_plot_cost_complexity_pruning_thumb.png
:alt: Post pruning decision trees with cost complexity pruning
:ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py`
.. only:: html
.. image:: /auto_examples/tree/images/thumb/sphx_glr_plot_unveil_tree_structure_thumb.png
:alt: Understanding the decision tree structure
:ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
Examples concerning the :mod:`sklearn.decomposition` module.
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_beta_divergence_thumb.png
:alt: Beta-divergence loss functions
:ref:`sphx_glr_auto_examples_decomposition_plot_beta_divergence.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_ica_blind_source_separation_thumb.png
:alt: Blind source separation using FastICA
:ref:`sphx_glr_auto_examples_decomposition_plot_ica_blind_source_separation.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_pca_vs_lda_thumb.png
:alt: Comparison of LDA and PCA 2D projection of Iris dataset
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_lda.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_faces_decomposition_thumb.png
:alt: Faces dataset decompositions
:ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_varimax_fa_thumb.png
:alt: Factor Analysis (with rotation) to visualize patterns
:ref:`sphx_glr_auto_examples_decomposition_plot_varimax_fa.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_ica_vs_pca_thumb.png
:alt: FastICA on 2D point clouds
:ref:`sphx_glr_auto_examples_decomposition_plot_ica_vs_pca.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_image_denoising_thumb.png
:alt: Image denoising using dictionary learning
:ref:`sphx_glr_auto_examples_decomposition_plot_image_denoising.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_incremental_pca_thumb.png
:alt: Incremental PCA
:ref:`sphx_glr_auto_examples_decomposition_plot_incremental_pca.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_kernel_pca_thumb.png
:alt: Kernel PCA
:ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_pca_vs_fa_model_selection_thumb.png
:alt: Model selection with Probabilistic PCA and Factor Analysis (FA)
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_pca_iris_thumb.png
:alt: PCA example with Iris Data-set
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_pca_3d_thumb.png
:alt: Principal components analysis (PCA)
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_3d.py`
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_sparse_coding_thumb.png
:alt: Sparse coding with a precomputed dictionary
:ref:`sphx_glr_auto_examples_decomposition_plot_sparse_coding.py`
Examples concerning the :mod:`sklearn.ensemble` module.
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_categorical_thumb.png
:alt: Categorical Feature Support in Gradient Boosting
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_categorical.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_stack_predictors_thumb.png
:alt: Combine predictors using stacking
:ref:`sphx_glr_auto_examples_ensemble_plot_stack_predictors.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_random_forest_regression_multioutput_thumb.png
:alt: Comparing random forests and the multi-output meta estimator
:ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_regression_multioutput.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_regression_thumb.png
:alt: Decision Tree Regression with AdaBoost
:ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_regression.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_hastie_10_2_thumb.png
:alt: Discrete versus Real AdaBoost
:ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_hastie_10_2.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_early_stopping_thumb.png
:alt: Early stopping of Gradient Boosting
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stopping.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_forest_importances_thumb.png
:alt: Feature importances with a forest of trees
:ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_feature_transformation_thumb.png
:alt: Feature transformations with ensembles of trees
:ref:`sphx_glr_auto_examples_ensemble_plot_feature_transformation.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_oob_thumb.png
:alt: Gradient Boosting Out-of-Bag estimates
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_oob.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_regression_thumb.png
:alt: Gradient Boosting regression
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_regularization_thumb.png
:alt: Gradient Boosting regularization
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regularization.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_random_forest_embedding_thumb.png
:alt: Hashing feature transformation using Totally Random Trees
:ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_embedding.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_isolation_forest_thumb.png
:alt: IsolationForest example
:ref:`sphx_glr_auto_examples_ensemble_plot_isolation_forest.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_monotonic_constraints_thumb.png
:alt: Monotonic Constraints
:ref:`sphx_glr_auto_examples_ensemble_plot_monotonic_constraints.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_multiclass_thumb.png
:alt: Multi-class AdaBoosted Decision Trees
:ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_multiclass.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_ensemble_oob_thumb.png
:alt: OOB Errors for Random Forests
:ref:`sphx_glr_auto_examples_ensemble_plot_ensemble_oob.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_forest_importances_faces_thumb.png
:alt: Pixel importances with a parallel forest of trees
:ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_voting_probas_thumb.png
:alt: Plot class probabilities calculated by the VotingClassifier
:ref:`sphx_glr_auto_examples_ensemble_plot_voting_probas.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_voting_regressor_thumb.png
:alt: Plot individual and voting regression predictions
:ref:`sphx_glr_auto_examples_ensemble_plot_voting_regressor.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_voting_decision_regions_thumb.png
:alt: Plot the decision boundaries of a VotingClassifier
:ref:`sphx_glr_auto_examples_ensemble_plot_voting_decision_regions.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_forest_iris_thumb.png
:alt: Plot the decision surfaces of ensembles of trees on the iris dataset
:ref:`sphx_glr_auto_examples_ensemble_plot_forest_iris.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_quantile_thumb.png
:alt: Prediction Intervals for Gradient Boosting Regression
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_bias_variance_thumb.png
:alt: Single estimator versus bagging: bias-variance decomposition
:ref:`sphx_glr_auto_examples_ensemble_plot_bias_variance.py`
.. only:: html
.. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_twoclass_thumb.png
:alt: Two-class AdaBoost
:ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_twoclass.py`
Applications to real world problems with some medium sized datasets or interactive user interface.
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_plot_tomography_l1_reconstruction_thumb.png
:alt: Compressive sensing: tomography reconstruction with L1 prior (Lasso)
:ref:`sphx_glr_auto_examples_applications_plot_tomography_l1_reconstruction.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_plot_face_recognition_thumb.png
:alt: Faces recognition example using eigenfaces and SVMs
:ref:`sphx_glr_auto_examples_applications_plot_face_recognition.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_plot_digits_denoising_thumb.png
:alt: Image denoising using kernel PCA
:ref:`sphx_glr_auto_examples_applications_plot_digits_denoising.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_svm_gui_thumb.png
:alt: Libsvm GUI
:ref:`sphx_glr_auto_examples_applications_svm_gui.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_plot_model_complexity_influence_thumb.png
:alt: Model Complexity Influence
:ref:`sphx_glr_auto_examples_applications_plot_model_complexity_influence.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_plot_out_of_core_classification_thumb.png
:alt: Out-of-core classification of text documents
:ref:`sphx_glr_auto_examples_applications_plot_out_of_core_classification.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_plot_outlier_detection_wine_thumb.png
:alt: Outlier detection on a real data set
:ref:`sphx_glr_auto_examples_applications_plot_outlier_detection_wine.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_plot_prediction_latency_thumb.png
:alt: Prediction Latency
:ref:`sphx_glr_auto_examples_applications_plot_prediction_latency.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_plot_species_distribution_modeling_thumb.png
:alt: Species distribution modeling
:ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_plot_cyclical_feature_engineering_thumb.png
:alt: Time-related feature engineering
:ref:`sphx_glr_auto_examples_applications_plot_cyclical_feature_engineering.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_plot_topics_extraction_with_nmf_lda_thumb.png
:alt: Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation
:ref:`sphx_glr_auto_examples_applications_plot_topics_extraction_with_nmf_lda.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_plot_stock_market_thumb.png
:alt: Visualizing the stock market structure
:ref:`sphx_glr_auto_examples_applications_plot_stock_market.py`
.. only:: html
.. image:: /auto_examples/applications/images/thumb/sphx_glr_wikipedia_principal_eigenvector_thumb.png
:alt: Wikipedia principal eigenvector
:ref:`sphx_glr_auto_examples_applications_wikipedia_principal_eigenvector.py`
Examples concerning the :mod:`sklearn.feature_selection` module.
.. only:: html
.. image:: /auto_examples/feature_selection/images/thumb/sphx_glr_plot_f_test_vs_mi_thumb.png
:alt: Comparison of F-test and mutual information
:ref:`sphx_glr_auto_examples_feature_selection_plot_f_test_vs_mi.py`
.. only:: html
.. image:: /auto_examples/feature_selection/images/thumb/sphx_glr_plot_select_from_model_diabetes_thumb.png
:alt: Model-based and sequential feature selection
:ref:`sphx_glr_auto_examples_feature_selection_plot_select_from_model_diabetes.py`
.. only:: html
.. image:: /auto_examples/feature_selection/images/thumb/sphx_glr_plot_feature_selection_pipeline_thumb.png
:alt: Pipeline ANOVA SVM
:ref:`sphx_glr_auto_examples_feature_selection_plot_feature_selection_pipeline.py`
.. only:: html
.. image:: /auto_examples/feature_selection/images/thumb/sphx_glr_plot_rfe_digits_thumb.png
:alt: Recursive feature elimination
:ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_digits.py`
.. only:: html
.. image:: /auto_examples/feature_selection/images/thumb/sphx_glr_plot_rfe_with_cross_validation_thumb.png
:alt: Recursive feature elimination with cross-validation
:ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py`
.. only:: html
.. image:: /auto_examples/feature_selection/images/thumb/sphx_glr_plot_feature_selection_thumb.png
:alt: Univariate Feature Selection
:ref:`sphx_glr_auto_examples_feature_selection_plot_feature_selection.py`
Examples concerning the :mod:`sklearn.mixture` module.
.. only:: html
.. image:: /auto_examples/mixture/images/thumb/sphx_glr_plot_concentration_prior_thumb.png
:alt: Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture
:ref:`sphx_glr_auto_examples_mixture_plot_concentration_prior.py`
.. only:: html
.. image:: /auto_examples/mixture/images/thumb/sphx_glr_plot_gmm_pdf_thumb.png
:alt: Density Estimation for a Gaussian mixture
:ref:`sphx_glr_auto_examples_mixture_plot_gmm_pdf.py`
.. only:: html
.. image:: /auto_examples/mixture/images/thumb/sphx_glr_plot_gmm_init_thumb.png
:alt: GMM Initialization Methods
:ref:`sphx_glr_auto_examples_mixture_plot_gmm_init.py`
.. only:: html
.. image:: /auto_examples/mixture/images/thumb/sphx_glr_plot_gmm_covariances_thumb.png
:alt: GMM covariances
:ref:`sphx_glr_auto_examples_mixture_plot_gmm_covariances.py`
.. only:: html
.. image:: /auto_examples/mixture/images/thumb/sphx_glr_plot_gmm_thumb.png
:alt: Gaussian Mixture Model Ellipsoids
:ref:`sphx_glr_auto_examples_mixture_plot_gmm.py`
.. only:: html
.. image:: /auto_examples/mixture/images/thumb/sphx_glr_plot_gmm_selection_thumb.png
:alt: Gaussian Mixture Model Selection
:ref:`sphx_glr_auto_examples_mixture_plot_gmm_selection.py`
.. only:: html
.. image:: /auto_examples/mixture/images/thumb/sphx_glr_plot_gmm_sin_thumb.png
:alt: Gaussian Mixture Model Sine Curve
:ref:`sphx_glr_auto_examples_mixture_plot_gmm_sin.py`
Examples concerning the :mod:`sklearn.gaussian_process` module.
.. only:: html
.. image:: /auto_examples/gaussian_process/images/thumb/sphx_glr_plot_compare_gpr_krr_thumb.png
:alt: Comparison of kernel ridge and Gaussian process regression
:ref:`sphx_glr_auto_examples_gaussian_process_plot_compare_gpr_krr.py`
.. only:: html
.. image:: /auto_examples/gaussian_process/images/thumb/sphx_glr_plot_gpr_noisy_targets_thumb.png
:alt: Gaussian Processes regression: basic introductory example
:ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_noisy_targets.py`
.. only:: html
.. image:: /auto_examples/gaussian_process/images/thumb/sphx_glr_plot_gpc_iris_thumb.png
:alt: Gaussian process classification (GPC) on iris dataset
:ref:`sphx_glr_auto_examples_gaussian_process_plot_gpc_iris.py`
.. only:: html
.. image:: /auto_examples/gaussian_process/images/thumb/sphx_glr_plot_gpr_co2_thumb.png
:alt: Gaussian process regression (GPR) on Mauna Loa CO2 data
:ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_co2.py`
.. only:: html
.. image:: /auto_examples/gaussian_process/images/thumb/sphx_glr_plot_gpr_noisy_thumb.png
:alt: Gaussian process regression (GPR) with noise-level estimation
:ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_noisy.py`
.. only:: html
.. image:: /auto_examples/gaussian_process/images/thumb/sphx_glr_plot_gpr_on_structured_data_thumb.png
:alt: Gaussian processes on discrete data structures
:ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_on_structured_data.py`
.. only:: html
.. image:: /auto_examples/gaussian_process/images/thumb/sphx_glr_plot_gpc_xor_thumb.png
:alt: Illustration of Gaussian process classification (GPC) on the XOR dataset
:ref:`sphx_glr_auto_examples_gaussian_process_plot_gpc_xor.py`
.. only:: html
.. image:: /auto_examples/gaussian_process/images/thumb/sphx_glr_plot_gpr_prior_posterior_thumb.png
:alt: Illustration of prior and posterior Gaussian process for different kernels
:ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_prior_posterior.py`
.. only:: html
.. image:: /auto_examples/gaussian_process/images/thumb/sphx_glr_plot_gpc_isoprobability_thumb.png
:alt: Iso-probability lines for Gaussian Processes classification (GPC)
:ref:`sphx_glr_auto_examples_gaussian_process_plot_gpc_isoprobability.py`
.. only:: html
.. image:: /auto_examples/gaussian_process/images/thumb/sphx_glr_plot_gpc_thumb.png
:alt: Probabilistic predictions with Gaussian process classification (GPC)
:ref:`sphx_glr_auto_examples_gaussian_process_plot_gpc.py`
Examples concerning the :mod:`sklearn.linear_model` module.
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ard_thumb.png
:alt: Comparing Linear Bayesian Regressors
:ref:`sphx_glr_auto_examples_linear_model_plot_ard.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_comparison_thumb.png
:alt: Comparing various online solvers
:ref:`sphx_glr_auto_examples_linear_model_plot_sgd_comparison.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_bayesian_ridge_curvefit_thumb.png
:alt: Curve Fitting with Bayesian Ridge Regression
:ref:`sphx_glr_auto_examples_linear_model_plot_bayesian_ridge_curvefit.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_early_stopping_thumb.png
:alt: Early stopping of Stochastic Gradient Descent
:ref:`sphx_glr_auto_examples_linear_model_plot_sgd_early_stopping.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_elastic_net_precomputed_gram_matrix_with_weighted_samples_thumb.png
:alt: Fitting an Elastic Net with a precomputed Gram Matrix and Weighted Samples
:ref:`sphx_glr_auto_examples_linear_model_plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_huber_vs_ridge_thumb.png
:alt: HuberRegressor vs Ridge on dataset with strong outliers
:ref:`sphx_glr_auto_examples_linear_model_plot_huber_vs_ridge.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_multi_task_lasso_support_thumb.png
:alt: Joint feature selection with multi-task Lasso
:ref:`sphx_glr_auto_examples_linear_model_plot_multi_task_lasso_support.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_logistic_l1_l2_sparsity_thumb.png
:alt: L1 Penalty and Sparsity in Logistic Regression
:ref:`sphx_glr_auto_examples_linear_model_plot_logistic_l1_l2_sparsity.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_coordinate_descent_path_thumb.png
:alt: Lasso and Elastic Net
:ref:`sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_and_elasticnet_thumb.png
:alt: Lasso and Elastic Net for Sparse Signals
:ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_lars_ic_thumb.png
:alt: Lasso model selection via information criteria
:ref:`sphx_glr_auto_examples_linear_model_plot_lasso_lars_ic.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_model_selection_thumb.png
:alt: Lasso model selection: AIC-BIC / cross-validation
:ref:`sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_dense_vs_sparse_data_thumb.png
:alt: Lasso on dense and sparse data
:ref:`sphx_glr_auto_examples_linear_model_plot_lasso_dense_vs_sparse_data.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_lars_thumb.png
:alt: Lasso path using LARS
:ref:`sphx_glr_auto_examples_linear_model_plot_lasso_lars.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ols_thumb.png
:alt: Linear Regression Example
:ref:`sphx_glr_auto_examples_linear_model_plot_ols.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_iris_logistic_thumb.png
:alt: Logistic Regression 3-class Classifier
:ref:`sphx_glr_auto_examples_linear_model_plot_iris_logistic.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_logistic_thumb.png
:alt: Logistic function
:ref:`sphx_glr_auto_examples_linear_model_plot_logistic.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sparse_logistic_regression_mnist_thumb.png
:alt: MNIST classification using multinomial logistic + L1
:ref:`sphx_glr_auto_examples_linear_model_plot_sparse_logistic_regression_mnist.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sparse_logistic_regression_20newsgroups_thumb.png
:alt: Multiclass sparse logistic regression on 20newgroups
:ref:`sphx_glr_auto_examples_linear_model_plot_sparse_logistic_regression_20newsgroups.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_nnls_thumb.png
:alt: Non-negative least squares
:ref:`sphx_glr_auto_examples_linear_model_plot_nnls.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgdocsvm_vs_ocsvm_thumb.png
:alt: One-Class SVM versus One-Class SVM using Stochastic Gradient Descent
:ref:`sphx_glr_auto_examples_linear_model_plot_sgdocsvm_vs_ocsvm.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ols_ridge_variance_thumb.png
:alt: Ordinary Least Squares and Ridge Regression Variance
:ref:`sphx_glr_auto_examples_linear_model_plot_ols_ridge_variance.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_omp_thumb.png
:alt: Orthogonal Matching Pursuit
:ref:`sphx_glr_auto_examples_linear_model_plot_omp.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ridge_coeffs_thumb.png
:alt: Plot Ridge coefficients as a function of the L2 regularization
:ref:`sphx_glr_auto_examples_linear_model_plot_ridge_coeffs.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ridge_path_thumb.png
:alt: Plot Ridge coefficients as a function of the regularization
:ref:`sphx_glr_auto_examples_linear_model_plot_ridge_path.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_iris_thumb.png
:alt: Plot multi-class SGD on the iris dataset
:ref:`sphx_glr_auto_examples_linear_model_plot_sgd_iris.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_logistic_multinomial_thumb.png
:alt: Plot multinomial and One-vs-Rest Logistic Regression
:ref:`sphx_glr_auto_examples_linear_model_plot_logistic_multinomial.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_poisson_regression_non_normal_loss_thumb.png
:alt: Poisson regression and non-normal loss
:ref:`sphx_glr_auto_examples_linear_model_plot_poisson_regression_non_normal_loss.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_polynomial_interpolation_thumb.png
:alt: Polynomial and Spline interpolation
:ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_quantile_regression_thumb.png
:alt: Quantile regression
:ref:`sphx_glr_auto_examples_linear_model_plot_quantile_regression.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_logistic_path_thumb.png
:alt: Regularization path of L1- Logistic Regression
:ref:`sphx_glr_auto_examples_linear_model_plot_logistic_path.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_robust_fit_thumb.png
:alt: Robust linear estimator fitting
:ref:`sphx_glr_auto_examples_linear_model_plot_robust_fit.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ransac_thumb.png
:alt: Robust linear model estimation using RANSAC
:ref:`sphx_glr_auto_examples_linear_model_plot_ransac.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_separating_hyperplane_thumb.png
:alt: SGD: Maximum margin separating hyperplane
:ref:`sphx_glr_auto_examples_linear_model_plot_sgd_separating_hyperplane.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_penalties_thumb.png
:alt: SGD: Penalties
:ref:`sphx_glr_auto_examples_linear_model_plot_sgd_penalties.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_weighted_samples_thumb.png
:alt: SGD: Weighted samples
:ref:`sphx_glr_auto_examples_linear_model_plot_sgd_weighted_samples.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_loss_functions_thumb.png
:alt: SGD: convex loss functions
:ref:`sphx_glr_auto_examples_linear_model_plot_sgd_loss_functions.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ols_3d_thumb.png
:alt: Sparsity Example: Fitting only features 1 and 2
:ref:`sphx_glr_auto_examples_linear_model_plot_ols_3d.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_theilsen_thumb.png
:alt: Theil-Sen Regression
:ref:`sphx_glr_auto_examples_linear_model_plot_theilsen.py`
.. only:: html
.. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_tweedie_regression_insurance_claims_thumb.png
:alt: Tweedie regression on insurance claims
:ref:`sphx_glr_auto_examples_linear_model_plot_tweedie_regression_insurance_claims.py`
Examples related to the :mod:`sklearn.inspection` module.
.. only:: html
.. image:: /auto_examples/inspection/images/thumb/sphx_glr_plot_linear_model_coefficient_interpretation_thumb.png
:alt: Common pitfalls in the interpretation of coefficients of linear models
:ref:`sphx_glr_auto_examples_inspection_plot_linear_model_coefficient_interpretation.py`
.. only:: html
.. image:: /auto_examples/inspection/images/thumb/sphx_glr_plot_partial_dependence_thumb.png
:alt: Partial Dependence and Individual Conditional Expectation Plots
:ref:`sphx_glr_auto_examples_inspection_plot_partial_dependence.py`
.. only:: html
.. image:: /auto_examples/inspection/images/thumb/sphx_glr_plot_permutation_importance_thumb.png
:alt: Permutation Importance vs Random Forest Feature Importance (MDI)
:ref:`sphx_glr_auto_examples_inspection_plot_permutation_importance.py`
.. only:: html
.. image:: /auto_examples/inspection/images/thumb/sphx_glr_plot_permutation_importance_multicollinear_thumb.png
:alt: Permutation Importance with Multicollinear or Correlated Features
:ref:`sphx_glr_auto_examples_inspection_plot_permutation_importance_multicollinear.py`
Examples concerning the :mod:`sklearn.kernel_approximation` module.
.. only:: html
.. image:: /auto_examples/kernel_approximation/images/thumb/sphx_glr_plot_scalable_poly_kernels_thumb.png
:alt: Scalable learning with polynomial kernel approximation
:ref:`sphx_glr_auto_examples_kernel_approximation_plot_scalable_poly_kernels.py`
Examples concerning the :mod:`sklearn.manifold` module.
.. only:: html
.. image:: /auto_examples/manifold/images/thumb/sphx_glr_plot_compare_methods_thumb.png
:alt: Comparison of Manifold Learning methods
:ref:`sphx_glr_auto_examples_manifold_plot_compare_methods.py`
.. only:: html
.. image:: /auto_examples/manifold/images/thumb/sphx_glr_plot_manifold_sphere_thumb.png
:alt: Manifold Learning methods on a severed sphere
:ref:`sphx_glr_auto_examples_manifold_plot_manifold_sphere.py`
.. only:: html
.. image:: /auto_examples/manifold/images/thumb/sphx_glr_plot_lle_digits_thumb.png
:alt: Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...
:ref:`sphx_glr_auto_examples_manifold_plot_lle_digits.py`
.. only:: html
.. image:: /auto_examples/manifold/images/thumb/sphx_glr_plot_mds_thumb.png
:alt: Multi-dimensional scaling
:ref:`sphx_glr_auto_examples_manifold_plot_mds.py`
.. only:: html
.. image:: /auto_examples/manifold/images/thumb/sphx_glr_plot_swissroll_thumb.png
:alt: Swiss Roll And Swiss-Hole Reduction
:ref:`sphx_glr_auto_examples_manifold_plot_swissroll.py`
.. only:: html
.. image:: /auto_examples/manifold/images/thumb/sphx_glr_plot_t_sne_perplexity_thumb.png
:alt: t-SNE: The effect of various perplexity values on the shape
:ref:`sphx_glr_auto_examples_manifold_plot_t_sne_perplexity.py`
Miscellaneous and introductory examples for scikit-learn.
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_partial_dependence_visualization_api_thumb.png
:alt: Advanced Plotting With Partial Dependence
:ref:`sphx_glr_auto_examples_miscellaneous_plot_partial_dependence_visualization_api.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_changed_only_pprint_parameter_thumb.png
:alt: Compact estimator representations
:ref:`sphx_glr_auto_examples_miscellaneous_plot_changed_only_pprint_parameter.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_anomaly_comparison_thumb.png
:alt: Comparing anomaly detection algorithms for outlier detection on toy datasets
:ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_kernel_ridge_regression_thumb.png
:alt: Comparison of kernel ridge regression and SVR
:ref:`sphx_glr_auto_examples_miscellaneous_plot_kernel_ridge_regression.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_pipeline_display_thumb.png
:alt: Displaying Pipelines
:ref:`sphx_glr_auto_examples_miscellaneous_plot_pipeline_display.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_outlier_detection_bench_thumb.png
:alt: Evaluation of outlier detection estimators
:ref:`sphx_glr_auto_examples_miscellaneous_plot_outlier_detection_bench.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_kernel_approximation_thumb.png
:alt: Explicit feature map approximation for RBF kernels
:ref:`sphx_glr_auto_examples_miscellaneous_plot_kernel_approximation.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_multioutput_face_completion_thumb.png
:alt: Face completion with a multi-output estimators
:ref:`sphx_glr_auto_examples_miscellaneous_plot_multioutput_face_completion.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_isotonic_regression_thumb.png
:alt: Isotonic Regression
:ref:`sphx_glr_auto_examples_miscellaneous_plot_isotonic_regression.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_multilabel_thumb.png
:alt: Multilabel classification
:ref:`sphx_glr_auto_examples_miscellaneous_plot_multilabel.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_roc_curve_visualization_api_thumb.png
:alt: ROC Curve with Visualization API
:ref:`sphx_glr_auto_examples_miscellaneous_plot_roc_curve_visualization_api.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_johnson_lindenstrauss_bound_thumb.png
:alt: The Johnson-Lindenstrauss bound for embedding with random projections
:ref:`sphx_glr_auto_examples_miscellaneous_plot_johnson_lindenstrauss_bound.py`
.. only:: html
.. image:: /auto_examples/miscellaneous/images/thumb/sphx_glr_plot_display_object_visualization_thumb.png
:alt: Visualizations with Display Objects
:ref:`sphx_glr_auto_examples_miscellaneous_plot_display_object_visualization.py`
Examples concerning the :mod:`sklearn.impute` module.
.. only:: html
.. image:: /auto_examples/impute/images/thumb/sphx_glr_plot_missing_values_thumb.png
:alt: Imputing missing values before building an estimator
:ref:`sphx_glr_auto_examples_impute_plot_missing_values.py`
.. only:: html
.. image:: /auto_examples/impute/images/thumb/sphx_glr_plot_iterative_imputer_variants_comparison_thumb.png
:alt: Imputing missing values with variants of IterativeImputer
:ref:`sphx_glr_auto_examples_impute_plot_iterative_imputer_variants_comparison.py`
Examples related to the :mod:`sklearn.model_selection` module.
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_grid_search_refit_callable_thumb.png
:alt: Balance model complexity and cross-validated score
:ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_refit_callable.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_randomized_search_thumb.png
:alt: Comparing randomized search and grid search for hyperparameter estimation
:ref:`sphx_glr_auto_examples_model_selection_plot_randomized_search.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_successive_halving_heatmap_thumb.png
:alt: Comparison between grid search and successive halving
:ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_heatmap.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_confusion_matrix_thumb.png
:alt: Confusion matrix
:ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_grid_search_digits_thumb.png
:alt: Custom refit strategy of a grid search with cross-validation
:ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_multi_metric_evaluation_thumb.png
:alt: Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV
:ref:`sphx_glr_auto_examples_model_selection_plot_multi_metric_evaluation.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_det_thumb.png
:alt: Detection error tradeoff (DET) curve
:ref:`sphx_glr_auto_examples_model_selection_plot_det.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_nested_cross_validation_iris_thumb.png
:alt: Nested versus non-nested cross-validation
:ref:`sphx_glr_auto_examples_model_selection_plot_nested_cross_validation_iris.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_cv_predict_thumb.png
:alt: Plotting Cross-Validated Predictions
:ref:`sphx_glr_auto_examples_model_selection_plot_cv_predict.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_learning_curve_thumb.png
:alt: Plotting Learning Curves
:ref:`sphx_glr_auto_examples_model_selection_plot_learning_curve.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_validation_curve_thumb.png
:alt: Plotting Validation Curves
:ref:`sphx_glr_auto_examples_model_selection_plot_validation_curve.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_precision_recall_thumb.png
:alt: Precision-Recall
:ref:`sphx_glr_auto_examples_model_selection_plot_precision_recall.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_roc_thumb.png
:alt: Receiver Operating Characteristic (ROC)
:ref:`sphx_glr_auto_examples_model_selection_plot_roc.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_roc_crossval_thumb.png
:alt: Receiver Operating Characteristic (ROC) with cross validation
:ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_grid_search_text_feature_extraction_thumb.png
:alt: Sample pipeline for text feature extraction and evaluation
:ref:`sphx_glr_auto_examples_model_selection_grid_search_text_feature_extraction.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_grid_search_stats_thumb.png
:alt: Statistical comparison of models using grid search
:ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_stats.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_successive_halving_iterations_thumb.png
:alt: Successive Halving Iterations
:ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_iterations.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_permutation_tests_for_classification_thumb.png
:alt: Test with permutations the significance of a classification score
:ref:`sphx_glr_auto_examples_model_selection_plot_permutation_tests_for_classification.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_train_error_vs_test_error_thumb.png
:alt: Train error vs Test error
:ref:`sphx_glr_auto_examples_model_selection_plot_train_error_vs_test_error.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_underfitting_overfitting_thumb.png
:alt: Underfitting vs. Overfitting
:ref:`sphx_glr_auto_examples_model_selection_plot_underfitting_overfitting.py`
.. only:: html
.. image:: /auto_examples/model_selection/images/thumb/sphx_glr_plot_cv_indices_thumb.png
:alt: Visualizing cross-validation behavior in scikit-learn
:ref:`sphx_glr_auto_examples_model_selection_plot_cv_indices.py`
Examples concerning the :mod:`sklearn.multioutput` module.
.. only:: html
.. image:: /auto_examples/multioutput/images/thumb/sphx_glr_plot_classifier_chain_yeast_thumb.png
:alt: Classifier Chain
:ref:`sphx_glr_auto_examples_multioutput_plot_classifier_chain_yeast.py`
Examples concerning the :mod:`sklearn.neighbors` module.
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_approximate_nearest_neighbors_thumb.png
:alt: Approximate nearest neighbors in TSNE
:ref:`sphx_glr_auto_examples_neighbors_approximate_nearest_neighbors.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_caching_nearest_neighbors_thumb.png
:alt: Caching nearest neighbors
:ref:`sphx_glr_auto_examples_neighbors_plot_caching_nearest_neighbors.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_nca_classification_thumb.png
:alt: Comparing Nearest Neighbors with and without Neighborhood Components Analysis
:ref:`sphx_glr_auto_examples_neighbors_plot_nca_classification.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_nca_dim_reduction_thumb.png
:alt: Dimensionality Reduction with Neighborhood Components Analysis
:ref:`sphx_glr_auto_examples_neighbors_plot_nca_dim_reduction.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_species_kde_thumb.png
:alt: Kernel Density Estimate of Species Distributions
:ref:`sphx_glr_auto_examples_neighbors_plot_species_kde.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_digits_kde_sampling_thumb.png
:alt: Kernel Density Estimation
:ref:`sphx_glr_auto_examples_neighbors_plot_digits_kde_sampling.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_nearest_centroid_thumb.png
:alt: Nearest Centroid Classification
:ref:`sphx_glr_auto_examples_neighbors_plot_nearest_centroid.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_classification_thumb.png
:alt: Nearest Neighbors Classification
:ref:`sphx_glr_auto_examples_neighbors_plot_classification.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_regression_thumb.png
:alt: Nearest Neighbors regression
:ref:`sphx_glr_auto_examples_neighbors_plot_regression.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_nca_illustration_thumb.png
:alt: Neighborhood Components Analysis Illustration
:ref:`sphx_glr_auto_examples_neighbors_plot_nca_illustration.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_lof_novelty_detection_thumb.png
:alt: Novelty detection with Local Outlier Factor (LOF)
:ref:`sphx_glr_auto_examples_neighbors_plot_lof_novelty_detection.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_lof_outlier_detection_thumb.png
:alt: Outlier detection with Local Outlier Factor (LOF)
:ref:`sphx_glr_auto_examples_neighbors_plot_lof_outlier_detection.py`
.. only:: html
.. image:: /auto_examples/neighbors/images/thumb/sphx_glr_plot_kde_1d_thumb.png
:alt: Simple 1D Kernel Density Estimation
:ref:`sphx_glr_auto_examples_neighbors_plot_kde_1d.py`
Examples concerning the :mod:`sklearn.neural_network` module.
.. only:: html
.. image:: /auto_examples/neural_networks/images/thumb/sphx_glr_plot_mlp_training_curves_thumb.png
:alt: Compare Stochastic learning strategies for MLPClassifier
:ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_training_curves.py`
.. only:: html
.. image:: /auto_examples/neural_networks/images/thumb/sphx_glr_plot_rbm_logistic_classification_thumb.png
:alt: Restricted Boltzmann Machine features for digit classification
:ref:`sphx_glr_auto_examples_neural_networks_plot_rbm_logistic_classification.py`
.. only:: html
.. image:: /auto_examples/neural_networks/images/thumb/sphx_glr_plot_mlp_alpha_thumb.png
:alt: Varying regularization in Multi-layer Perceptron
:ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_alpha.py`
.. only:: html
.. image:: /auto_examples/neural_networks/images/thumb/sphx_glr_plot_mnist_filters_thumb.png
:alt: Visualization of MLP weights on MNIST
:ref:`sphx_glr_auto_examples_neural_networks_plot_mnist_filters.py`
Examples of how to compose transformers and pipelines from other estimators. See the :ref:`User Guide <combining_estimators>`.
.. only:: html
.. image:: /auto_examples/compose/images/thumb/sphx_glr_plot_column_transformer_thumb.png
:alt: Column Transformer with Heterogeneous Data Sources
:ref:`sphx_glr_auto_examples_compose_plot_column_transformer.py`
.. only:: html
.. image:: /auto_examples/compose/images/thumb/sphx_glr_plot_column_transformer_mixed_types_thumb.png
:alt: Column Transformer with Mixed Types
:ref:`sphx_glr_auto_examples_compose_plot_column_transformer_mixed_types.py`
.. only:: html
.. image:: /auto_examples/compose/images/thumb/sphx_glr_plot_feature_union_thumb.png
:alt: Concatenating multiple feature extraction methods
:ref:`sphx_glr_auto_examples_compose_plot_feature_union.py`
.. only:: html
.. image:: /auto_examples/compose/images/thumb/sphx_glr_plot_transformed_target_thumb.png
:alt: Effect of transforming the targets in regression model
:ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py`
.. only:: html
.. image:: /auto_examples/compose/images/thumb/sphx_glr_plot_digits_pipe_thumb.png
:alt: Pipelining: chaining a PCA and a logistic regression
:ref:`sphx_glr_auto_examples_compose_plot_digits_pipe.py`
.. only:: html
.. image:: /auto_examples/compose/images/thumb/sphx_glr_plot_compare_reduction_thumb.png
:alt: Selecting dimensionality reduction with Pipeline and GridSearchCV
:ref:`sphx_glr_auto_examples_compose_plot_compare_reduction.py`
Examples concerning the :mod:`sklearn.preprocessing` module.
.. only:: html
.. image:: /auto_examples/preprocessing/images/thumb/sphx_glr_plot_all_scaling_thumb.png
:alt: Compare the effect of different scalers on data with outliers
:ref:`sphx_glr_auto_examples_preprocessing_plot_all_scaling.py`
.. only:: html
.. image:: /auto_examples/preprocessing/images/thumb/sphx_glr_plot_discretization_strategies_thumb.png
:alt: Demonstrating the different strategies of KBinsDiscretizer
:ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_strategies.py`
.. only:: html
.. image:: /auto_examples/preprocessing/images/thumb/sphx_glr_plot_discretization_classification_thumb.png
:alt: Feature discretization
:ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_classification.py`
.. only:: html
.. image:: /auto_examples/preprocessing/images/thumb/sphx_glr_plot_scaling_importance_thumb.png
:alt: Importance of Feature Scaling
:ref:`sphx_glr_auto_examples_preprocessing_plot_scaling_importance.py`
.. only:: html
.. image:: /auto_examples/preprocessing/images/thumb/sphx_glr_plot_map_data_to_normal_thumb.png
:alt: Map data to a normal distribution
:ref:`sphx_glr_auto_examples_preprocessing_plot_map_data_to_normal.py`
.. only:: html
.. image:: /auto_examples/preprocessing/images/thumb/sphx_glr_plot_discretization_thumb.png
:alt: Using KBinsDiscretizer to discretize continuous features
:ref:`sphx_glr_auto_examples_preprocessing_plot_discretization.py`
Examples concerning the :mod:`sklearn.semi_supervised` module.
.. only:: html
.. image:: /auto_examples/semi_supervised/images/thumb/sphx_glr_plot_semi_supervised_versus_svm_iris_thumb.png
:alt: Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset
:ref:`sphx_glr_auto_examples_semi_supervised_plot_semi_supervised_versus_svm_iris.py`
.. only:: html
.. image:: /auto_examples/semi_supervised/images/thumb/sphx_glr_plot_self_training_varying_threshold_thumb.png
:alt: Effect of varying threshold for self-training
:ref:`sphx_glr_auto_examples_semi_supervised_plot_self_training_varying_threshold.py`
.. only:: html
.. image:: /auto_examples/semi_supervised/images/thumb/sphx_glr_plot_label_propagation_digits_active_learning_thumb.png
:alt: Label Propagation digits active learning
:ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_digits_active_learning.py`
.. only:: html
.. image:: /auto_examples/semi_supervised/images/thumb/sphx_glr_plot_label_propagation_digits_thumb.png
:alt: Label Propagation digits: Demonstrating performance
:ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_digits.py`
.. only:: html
.. image:: /auto_examples/semi_supervised/images/thumb/sphx_glr_plot_label_propagation_structure_thumb.png
:alt: Label Propagation learning a complex structure
:ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_structure.py`
.. only:: html
.. image:: /auto_examples/semi_supervised/images/thumb/sphx_glr_plot_semi_supervised_newsgroups_thumb.png
:alt: Semi-supervised Classification on a Text Dataset
:ref:`sphx_glr_auto_examples_semi_supervised_plot_semi_supervised_newsgroups.py`
Examples concerning the :mod:`sklearn.svm` module.
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_svm_nonlinear_thumb.png
:alt: Non-linear SVM
:ref:`sphx_glr_auto_examples_svm_plot_svm_nonlinear.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_oneclass_thumb.png
:alt: One-class SVM with non-linear kernel (RBF)
:ref:`sphx_glr_auto_examples_svm_plot_oneclass.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_iris_svc_thumb.png
:alt: Plot different SVM classifiers in the iris dataset
:ref:`sphx_glr_auto_examples_svm_plot_iris_svc.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_linearsvc_support_vectors_thumb.png
:alt: Plot the support vectors in LinearSVC
:ref:`sphx_glr_auto_examples_svm_plot_linearsvc_support_vectors.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_rbf_parameters_thumb.png
:alt: RBF SVM parameters
:ref:`sphx_glr_auto_examples_svm_plot_rbf_parameters.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_svm_margin_thumb.png
:alt: SVM Margins Example
:ref:`sphx_glr_auto_examples_svm_plot_svm_margin.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_svm_tie_breaking_thumb.png
:alt: SVM Tie Breaking Example
:ref:`sphx_glr_auto_examples_svm_plot_svm_tie_breaking.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_custom_kernel_thumb.png
:alt: SVM with custom kernel
:ref:`sphx_glr_auto_examples_svm_plot_custom_kernel.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_svm_anova_thumb.png
:alt: SVM-Anova: SVM with univariate feature selection
:ref:`sphx_glr_auto_examples_svm_plot_svm_anova.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_svm_kernels_thumb.png
:alt: SVM-Kernels
:ref:`sphx_glr_auto_examples_svm_plot_svm_kernels.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_separating_hyperplane_thumb.png
:alt: SVM: Maximum margin separating hyperplane
:ref:`sphx_glr_auto_examples_svm_plot_separating_hyperplane.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_separating_hyperplane_unbalanced_thumb.png
:alt: SVM: Separating hyperplane for unbalanced classes
:ref:`sphx_glr_auto_examples_svm_plot_separating_hyperplane_unbalanced.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_weighted_samples_thumb.png
:alt: SVM: Weighted samples
:ref:`sphx_glr_auto_examples_svm_plot_weighted_samples.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_svm_scale_c_thumb.png
:alt: Scaling the regularization parameter for SVCs
:ref:`sphx_glr_auto_examples_svm_plot_svm_scale_c.py`
.. only:: html
.. image:: /auto_examples/svm/images/thumb/sphx_glr_plot_svm_regression_thumb.png
:alt: Support Vector Regression (SVR) using linear and non-linear kernels
:ref:`sphx_glr_auto_examples_svm_plot_svm_regression.py`
Exercises for the tutorials
.. only:: html
.. image:: /auto_examples/exercises/images/thumb/sphx_glr_plot_cv_digits_thumb.png
:alt: Cross-validation on Digits Dataset Exercise
:ref:`sphx_glr_auto_examples_exercises_plot_cv_digits.py`
.. only:: html
.. image:: /auto_examples/exercises/images/thumb/sphx_glr_plot_cv_diabetes_thumb.png
:alt: Cross-validation on diabetes Dataset Exercise
:ref:`sphx_glr_auto_examples_exercises_plot_cv_diabetes.py`
.. only:: html
.. image:: /auto_examples/exercises/images/thumb/sphx_glr_plot_digits_classification_exercise_thumb.png
:alt: Digits Classification Exercise
:ref:`sphx_glr_auto_examples_exercises_plot_digits_classification_exercise.py`
.. only:: html
.. image:: /auto_examples/exercises/images/thumb/sphx_glr_plot_iris_exercise_thumb.png
:alt: SVM Exercise
:ref:`sphx_glr_auto_examples_exercises_plot_iris_exercise.py`
Examples concerning the :mod:`sklearn.feature_extraction.text` module.
.. only:: html
.. image:: /auto_examples/text/images/thumb/sphx_glr_plot_document_classification_20newsgroups_thumb.png
:alt: Classification of text documents using sparse features
:ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
.. only:: html
.. image:: /auto_examples/text/images/thumb/sphx_glr_plot_document_clustering_thumb.png
:alt: Clustering text documents using k-means
:ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`
.. only:: html
.. image:: /auto_examples/text/images/thumb/sphx_glr_plot_hashing_vs_dict_vectorizer_thumb.png
:alt: FeatureHasher and DictVectorizer Comparison
:ref:`sphx_glr_auto_examples_text_plot_hashing_vs_dict_vectorizer.py`
.. toctree::
:hidden:
:includehidden:
/auto_examples/release_highlights/index.rst
/auto_examples/bicluster/index.rst
/auto_examples/calibration/index.rst
/auto_examples/classification/index.rst
/auto_examples/cluster/index.rst
/auto_examples/covariance/index.rst
/auto_examples/cross_decomposition/index.rst
/auto_examples/datasets/index.rst
/auto_examples/tree/index.rst
/auto_examples/decomposition/index.rst
/auto_examples/ensemble/index.rst
/auto_examples/applications/index.rst
/auto_examples/feature_selection/index.rst
/auto_examples/mixture/index.rst
/auto_examples/gaussian_process/index.rst
/auto_examples/linear_model/index.rst
/auto_examples/inspection/index.rst
/auto_examples/kernel_approximation/index.rst
/auto_examples/manifold/index.rst
/auto_examples/miscellaneous/index.rst
/auto_examples/impute/index.rst
/auto_examples/model_selection/index.rst
/auto_examples/multioutput/index.rst
/auto_examples/neighbors/index.rst
/auto_examples/neural_networks/index.rst
/auto_examples/compose/index.rst
/auto_examples/preprocessing/index.rst
/auto_examples/semi_supervised/index.rst
/auto_examples/svm/index.rst
/auto_examples/exercises/index.rst
/auto_examples/text/index.rst
.. only:: html
.. container:: sphx-glr-footer sphx-glr-footer-gallery
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download all examples in Python source code: auto_examples_python.zip </auto_examples/auto_examples_python.zip>`
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download all examples in Jupyter notebooks: auto_examples_jupyter.zip </auto_examples/auto_examples_jupyter.zip>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_