Examples concerning the :mod:`sklearn.decomposition` module.
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_beta_divergence_thumb.png
:alt: Beta-divergence loss functions
:ref:`sphx_glr_auto_examples_decomposition_plot_beta_divergence.py`
Beta-divergence loss functions
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_ica_blind_source_separation_thumb.png
:alt: Blind source separation using FastICA
:ref:`sphx_glr_auto_examples_decomposition_plot_ica_blind_source_separation.py`
Blind source separation using FastICA
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_pca_vs_lda_thumb.png
:alt: Comparison of LDA and PCA 2D projection of Iris dataset
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_lda.py`
Comparison of LDA and PCA 2D projection of Iris dataset
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_faces_decomposition_thumb.png
:alt: Faces dataset decompositions
:ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py`
Faces dataset decompositions
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_varimax_fa_thumb.png
:alt: Factor Analysis (with rotation) to visualize patterns
:ref:`sphx_glr_auto_examples_decomposition_plot_varimax_fa.py`
Factor Analysis (with rotation) to visualize patterns
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_ica_vs_pca_thumb.png
:alt: FastICA on 2D point clouds
:ref:`sphx_glr_auto_examples_decomposition_plot_ica_vs_pca.py`
FastICA on 2D point clouds
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_image_denoising_thumb.png
:alt: Image denoising using dictionary learning
:ref:`sphx_glr_auto_examples_decomposition_plot_image_denoising.py`
Image denoising using dictionary learning
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_incremental_pca_thumb.png
:alt: Incremental PCA
:ref:`sphx_glr_auto_examples_decomposition_plot_incremental_pca.py`
Incremental PCA
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_kernel_pca_thumb.png
:alt: Kernel PCA
:ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`
Kernel PCA
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_pca_vs_fa_model_selection_thumb.png
:alt: Model selection with Probabilistic PCA and Factor Analysis (FA)
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py`
Model selection with Probabilistic PCA and Factor Analysis (FA)
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_pca_iris_thumb.png
:alt: PCA example with Iris Data-set
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py`
PCA example with Iris Data-set
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_pca_3d_thumb.png
:alt: Principal components analysis (PCA)
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_3d.py`
Principal components analysis (PCA)
.. only:: html
.. image:: /auto_examples/decomposition/images/thumb/sphx_glr_plot_sparse_coding_thumb.png
:alt: Sparse coding with a precomputed dictionary
:ref:`sphx_glr_auto_examples_decomposition_plot_sparse_coding.py`
Sparse coding with a precomputed dictionary
.. toctree::
:hidden:
/auto_examples/decomposition/plot_beta_divergence
/auto_examples/decomposition/plot_ica_blind_source_separation
/auto_examples/decomposition/plot_pca_vs_lda
/auto_examples/decomposition/plot_faces_decomposition
/auto_examples/decomposition/plot_varimax_fa
/auto_examples/decomposition/plot_ica_vs_pca
/auto_examples/decomposition/plot_image_denoising
/auto_examples/decomposition/plot_incremental_pca
/auto_examples/decomposition/plot_kernel_pca
/auto_examples/decomposition/plot_pca_vs_fa_model_selection
/auto_examples/decomposition/plot_pca_iris
/auto_examples/decomposition/plot_pca_3d
/auto_examples/decomposition/plot_sparse_coding