-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathplot_gpr_co2.html
498 lines (443 loc) · 44.2 KB
/
plot_gpr_co2.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="Description" content="scikit-learn: machine learning in Python">
<title>Gaussian process regression (GPR) on Mauna Loa CO2 data. — scikit-learn 0.22.2 documentation</title>
<link rel="canonical" href="https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html" />
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="stylesheet" href="../../_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="../../index.html">
<img
class="sk-brand-img"
src="../../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../modules/classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../getting_started.html">Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../tutorial/index.html">Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../glossary.html">Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../developers/index.html">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../faq.html">FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../related_projects.html">Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../roadmap.html">Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../about.html">About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn">GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html">Other Versions</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="../../getting_started.html">Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../tutorial/index.html">Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../glossary.html">Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../developers/index.html">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../faq.html">FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../related_projects.html">Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../roadmap.html">Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../about.html">About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn">GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html">Other Versions</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="../../search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="sk-sidebar-toc-logo">
<a href="../../index.html">
<img
class="sk-brand-img"
src="../../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
</div>
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="plot_gpr_noisy_targets.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Gaussian Processes regression: basic introductory example">Prev</a><a href="../index.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Examples">Up</a>
<a href="plot_gpr_on_structured_data.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="Gaussian processes on discrete data structures">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 0.22.2</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="../../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li><a class="reference internal" href="#">Gaussian process regression (GPR) on Mauna Loa CO2 data.</a></li>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<div class="sphx-glr-download-link-note admonition note">
<p class="admonition-title">Note</p>
<p>Click <a class="reference internal" href="#sphx-glr-download-auto-examples-gaussian-process-plot-gpr-co2-py"><span class="std std-ref">here</span></a> to download the full example code or to run this example in your browser via Binder</p>
</div>
<div class="sphx-glr-example-title section" id="gaussian-process-regression-gpr-on-mauna-loa-co2-data">
<span id="sphx-glr-auto-examples-gaussian-process-plot-gpr-co2-py"></span><h1>Gaussian process regression (GPR) on Mauna Loa CO2 data.<a class="headerlink" href="#gaussian-process-regression-gpr-on-mauna-loa-co2-data" title="Permalink to this headline">¶</a></h1>
<p>This example is based on Section 5.4.3 of “Gaussian Processes for Machine
Learning” [RW2006]. It illustrates an example of complex kernel engineering and
hyperparameter optimization using gradient ascent on the
log-marginal-likelihood. The data consists of the monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) collected at the
Mauna Loa Observatory in Hawaii, between 1958 and 2001. The objective is to
model the CO2 concentration as a function of the time t.</p>
<p>The kernel is composed of several terms that are responsible for explaining
different properties of the signal:</p>
<ul class="simple">
<li><p>a long term, smooth rising trend is to be explained by an RBF kernel. The
RBF kernel with a large length-scale enforces this component to be smooth;
it is not enforced that the trend is rising which leaves this choice to the
GP. The specific length-scale and the amplitude are free hyperparameters.</p></li>
<li><p>a seasonal component, which is to be explained by the periodic
ExpSineSquared kernel with a fixed periodicity of 1 year. The length-scale
of this periodic component, controlling its smoothness, is a free parameter.
In order to allow decaying away from exact periodicity, the product with an
RBF kernel is taken. The length-scale of this RBF component controls the
decay time and is a further free parameter.</p></li>
<li><p>smaller, medium term irregularities are to be explained by a
RationalQuadratic kernel component, whose length-scale and alpha parameter,
which determines the diffuseness of the length-scales, are to be determined.
According to [RW2006], these irregularities can better be explained by
a RationalQuadratic than an RBF kernel component, probably because it can
accommodate several length-scales.</p></li>
<li><p>a “noise” term, consisting of an RBF kernel contribution, which shall
explain the correlated noise components such as local weather phenomena,
and a WhiteKernel contribution for the white noise. The relative amplitudes
and the RBF’s length scale are further free parameters.</p></li>
</ul>
<p>Maximizing the log-marginal-likelihood after subtracting the target’s mean
yields the following kernel with an LML of -83.214:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">34.4</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RBF.html#sklearn.gaussian_process.kernels.RBF" title="View documentation for sklearn.gaussian_process.kernels.RBF"><span class="n">RBF</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">41.8</span><span class="p">)</span>
<span class="o">+</span> <span class="mf">3.27</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RBF.html#sklearn.gaussian_process.kernels.RBF" title="View documentation for sklearn.gaussian_process.kernels.RBF"><span class="n">RBF</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mi">180</span><span class="p">)</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.ExpSineSquared.html#sklearn.gaussian_process.kernels.ExpSineSquared" title="View documentation for sklearn.gaussian_process.kernels.ExpSineSquared"><span class="n">ExpSineSquared</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">1.44</span><span class="p">,</span>
<span class="n">periodicity</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="o">+</span> <span class="mf">0.446</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html#sklearn.gaussian_process.kernels.RationalQuadratic" title="View documentation for sklearn.gaussian_process.kernels.RationalQuadratic"><span class="n">RationalQuadratic</span></a><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="mf">17.7</span><span class="p">,</span> <span class="n">length_scale</span><span class="o">=</span><span class="mf">0.957</span><span class="p">)</span>
<span class="o">+</span> <span class="mf">0.197</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RBF.html#sklearn.gaussian_process.kernels.RBF" title="View documentation for sklearn.gaussian_process.kernels.RBF"><span class="n">RBF</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">0.138</span><span class="p">)</span> <span class="o">+</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.WhiteKernel.html#sklearn.gaussian_process.kernels.WhiteKernel" title="View documentation for sklearn.gaussian_process.kernels.WhiteKernel"><span class="n">WhiteKernel</span></a><span class="p">(</span><span class="n">noise_level</span><span class="o">=</span><span class="mf">0.0336</span><span class="p">)</span>
</pre></div>
</div>
<p>Thus, most of the target signal (34.4ppm) is explained by a long-term rising
trend (length-scale 41.8 years). The periodic component has an amplitude of
3.27ppm, a decay time of 180 years and a length-scale of 1.44. The long decay
time indicates that we have a locally very close to periodic seasonal
component. The correlated noise has an amplitude of 0.197ppm with a length
scale of 0.138 years and a white-noise contribution of 0.197ppm. Thus, the
overall noise level is very small, indicating that the data can be very well
explained by the model. The figure shows also that the model makes very
confident predictions until around 2015.</p>
<img alt="../../_images/sphx_glr_plot_gpr_co2_001.png" class="sphx-glr-single-img" src="../../_images/sphx_glr_plot_gpr_co2_001.png" />
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>GPML kernel: 66**2 * RBF(length_scale=67) + 2.4**2 * RBF(length_scale=90) * ExpSineSquared(length_scale=1.3, periodicity=1) + 0.66**2 * RationalQuadratic(alpha=0.78, length_scale=1.2) + 0.18**2 * RBF(length_scale=0.134) + WhiteKernel(noise_level=0.0361)
Log-marginal-likelihood: -117.023
Learned kernel: 44.8**2 * RBF(length_scale=51.6) + 2.64**2 * RBF(length_scale=91.5) * ExpSineSquared(length_scale=1.48, periodicity=1) + 0.536**2 * RationalQuadratic(alpha=2.89, length_scale=0.968) + 0.188**2 * RBF(length_scale=0.122) + WhiteKernel(noise_level=0.0367)
Log-marginal-likelihood: -115.050
</pre></div>
</div>
<div class="line-block">
<div class="line"><br /></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># Authors: Jan Hendrik Metzen <[email protected]></span>
<span class="c1">#</span>
<span class="c1"># License: BSD 3 clause</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">matplotlib</span> <span class="kn">import</span> <span class="n">pyplot</span> <span class="k">as</span> <span class="n">plt</span>
<span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.datasets.fetch_openml.html#sklearn.datasets.fetch_openml" title="View documentation for sklearn.datasets.fetch_openml"><span class="n">fetch_openml</span></a>
<span class="kn">from</span> <span class="nn">sklearn.gaussian_process</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor" title="View documentation for sklearn.gaussian_process.GaussianProcessRegressor"><span class="n">GaussianProcessRegressor</span></a>
<span class="kn">from</span> <span class="nn">sklearn.gaussian_process.kernels</span> \
<span class="kn">import</span> <span class="nn">RBF</span><span class="o">,</span> <span class="nn">WhiteKernel</span><span class="o">,</span> <span class="nn">RationalQuadratic</span><span class="o">,</span> <span class="nn">ExpSineSquared</span>
<span class="nb">print</span><span class="p">(</span><span class="vm">__doc__</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">load_mauna_loa_atmospheric_co2</span><span class="p">():</span>
<span class="n">ml_data</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.datasets.fetch_openml.html#sklearn.datasets.fetch_openml" title="View documentation for sklearn.datasets.fetch_openml"><span class="n">fetch_openml</span></a><span class="p">(</span><span class="n">data_id</span><span class="o">=</span><span class="mi">41187</span><span class="p">)</span>
<span class="n">months</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ppmv_sums</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">counts</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">ml_data</span><span class="o">.</span><span class="n">data</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">ml_data</span><span class="o">.</span><span class="n">data</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span>
<span class="n">month_float</span> <span class="o">=</span> <span class="n">y</span> <span class="o">+</span> <span class="p">(</span><span class="n">m</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">12</span>
<span class="n">ppmvs</span> <span class="o">=</span> <span class="n">ml_data</span><span class="o">.</span><span class="n">target</span>
<span class="k">for</span> <span class="n">month</span><span class="p">,</span> <span class="n">ppmv</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">month_float</span><span class="p">,</span> <span class="n">ppmvs</span><span class="p">):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">months</span> <span class="ow">or</span> <span class="n">month</span> <span class="o">!=</span> <span class="n">months</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]:</span>
<span class="n">months</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">month</span><span class="p">)</span>
<span class="n">ppmv_sums</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">ppmv</span><span class="p">)</span>
<span class="n">counts</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># aggregate monthly sum to produce average</span>
<span class="n">ppmv_sums</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+=</span> <span class="n">ppmv</span>
<span class="n">counts</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="n">months</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html#numpy.asarray" title="View documentation for numpy.asarray"><span class="n">np</span><span class="o">.</span><span class="n">asarray</span></a><span class="p">(</span><span class="n">months</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">avg_ppmvs</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html#numpy.asarray" title="View documentation for numpy.asarray"><span class="n">np</span><span class="o">.</span><span class="n">asarray</span></a><span class="p">(</span><span class="n">ppmv_sums</span><span class="p">)</span> <span class="o">/</span> <span class="n">counts</span>
<span class="k">return</span> <span class="n">months</span><span class="p">,</span> <span class="n">avg_ppmvs</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">load_mauna_loa_atmospheric_co2</span><span class="p">()</span>
<span class="c1"># Kernel with parameters given in GPML book</span>
<span class="n">k1</span> <span class="o">=</span> <span class="mf">66.0</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RBF.html#sklearn.gaussian_process.kernels.RBF" title="View documentation for sklearn.gaussian_process.kernels.RBF"><span class="n">RBF</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">67.0</span><span class="p">)</span> <span class="c1"># long term smooth rising trend</span>
<span class="n">k2</span> <span class="o">=</span> <span class="mf">2.4</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RBF.html#sklearn.gaussian_process.kernels.RBF" title="View documentation for sklearn.gaussian_process.kernels.RBF"><span class="n">RBF</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">90.0</span><span class="p">)</span> \
<span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.ExpSineSquared.html#sklearn.gaussian_process.kernels.ExpSineSquared" title="View documentation for sklearn.gaussian_process.kernels.ExpSineSquared"><span class="n">ExpSineSquared</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">1.3</span><span class="p">,</span> <span class="n">periodicity</span><span class="o">=</span><span class="mf">1.0</span><span class="p">)</span> <span class="c1"># seasonal component</span>
<span class="c1"># medium term irregularity</span>
<span class="n">k3</span> <span class="o">=</span> <span class="mf">0.66</span><span class="o">**</span><span class="mi">2</span> \
<span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html#sklearn.gaussian_process.kernels.RationalQuadratic" title="View documentation for sklearn.gaussian_process.kernels.RationalQuadratic"><span class="n">RationalQuadratic</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">1.2</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.78</span><span class="p">)</span>
<span class="n">k4</span> <span class="o">=</span> <span class="mf">0.18</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RBF.html#sklearn.gaussian_process.kernels.RBF" title="View documentation for sklearn.gaussian_process.kernels.RBF"><span class="n">RBF</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">0.134</span><span class="p">)</span> \
<span class="o">+</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.WhiteKernel.html#sklearn.gaussian_process.kernels.WhiteKernel" title="View documentation for sklearn.gaussian_process.kernels.WhiteKernel"><span class="n">WhiteKernel</span></a><span class="p">(</span><span class="n">noise_level</span><span class="o">=</span><span class="mf">0.19</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> <span class="c1"># noise terms</span>
<span class="n">kernel_gpml</span> <span class="o">=</span> <span class="n">k1</span> <span class="o">+</span> <span class="n">k2</span> <span class="o">+</span> <span class="n">k3</span> <span class="o">+</span> <span class="n">k4</span>
<span class="n">gp</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor" title="View documentation for sklearn.gaussian_process.GaussianProcessRegressor"><span class="n">GaussianProcessRegressor</span></a><span class="p">(</span><span class="n">kernel</span><span class="o">=</span><span class="n">kernel_gpml</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">optimizer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">normalize_y</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">gp</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"GPML kernel: </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="n">gp</span><span class="o">.</span><span class="n">kernel_</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Log-marginal-likelihood: </span><span class="si">%.3f</span><span class="s2">"</span>
<span class="o">%</span> <span class="n">gp</span><span class="o">.</span><span class="n">log_marginal_likelihood</span><span class="p">(</span><span class="n">gp</span><span class="o">.</span><span class="n">kernel_</span><span class="o">.</span><span class="n">theta</span><span class="p">))</span>
<span class="c1"># Kernel with optimized parameters</span>
<span class="n">k1</span> <span class="o">=</span> <span class="mf">50.0</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RBF.html#sklearn.gaussian_process.kernels.RBF" title="View documentation for sklearn.gaussian_process.kernels.RBF"><span class="n">RBF</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">50.0</span><span class="p">)</span> <span class="c1"># long term smooth rising trend</span>
<span class="n">k2</span> <span class="o">=</span> <span class="mf">2.0</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RBF.html#sklearn.gaussian_process.kernels.RBF" title="View documentation for sklearn.gaussian_process.kernels.RBF"><span class="n">RBF</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">100.0</span><span class="p">)</span> \
<span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.ExpSineSquared.html#sklearn.gaussian_process.kernels.ExpSineSquared" title="View documentation for sklearn.gaussian_process.kernels.ExpSineSquared"><span class="n">ExpSineSquared</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">periodicity</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">periodicity_bounds</span><span class="o">=</span><span class="s2">"fixed"</span><span class="p">)</span> <span class="c1"># seasonal component</span>
<span class="c1"># medium term irregularities</span>
<span class="n">k3</span> <span class="o">=</span> <span class="mf">0.5</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html#sklearn.gaussian_process.kernels.RationalQuadratic" title="View documentation for sklearn.gaussian_process.kernels.RationalQuadratic"><span class="n">RationalQuadratic</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">1.0</span><span class="p">)</span>
<span class="n">k4</span> <span class="o">=</span> <span class="mf">0.1</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.RBF.html#sklearn.gaussian_process.kernels.RBF" title="View documentation for sklearn.gaussian_process.kernels.RBF"><span class="n">RBF</span></a><span class="p">(</span><span class="n">length_scale</span><span class="o">=</span><span class="mf">0.1</span><span class="p">)</span> \
<span class="o">+</span> <a href="../../modules/generated/sklearn.gaussian_process.kernels.WhiteKernel.html#sklearn.gaussian_process.kernels.WhiteKernel" title="View documentation for sklearn.gaussian_process.kernels.WhiteKernel"><span class="n">WhiteKernel</span></a><span class="p">(</span><span class="n">noise_level</span><span class="o">=</span><span class="mf">0.1</span><span class="o">**</span><span class="mi">2</span><span class="p">,</span>
<span class="n">noise_level_bounds</span><span class="o">=</span><span class="p">(</span><span class="mf">1e-3</span><span class="p">,</span> <a href="https://docs.scipy.org/doc/numpy/reference/constants.html#numpy.inf" title="View documentation for numpy.inf"><span class="n">np</span><span class="o">.</span><span class="n">inf</span></a><span class="p">))</span> <span class="c1"># noise terms</span>
<span class="n">kernel</span> <span class="o">=</span> <span class="n">k1</span> <span class="o">+</span> <span class="n">k2</span> <span class="o">+</span> <span class="n">k3</span> <span class="o">+</span> <span class="n">k4</span>
<span class="n">gp</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor" title="View documentation for sklearn.gaussian_process.GaussianProcessRegressor"><span class="n">GaussianProcessRegressor</span></a><span class="p">(</span><span class="n">kernel</span><span class="o">=</span><span class="n">kernel</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">normalize_y</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">gp</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"</span><span class="se">\n</span><span class="s2">Learned kernel: </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="n">gp</span><span class="o">.</span><span class="n">kernel_</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Log-marginal-likelihood: </span><span class="si">%.3f</span><span class="s2">"</span>
<span class="o">%</span> <span class="n">gp</span><span class="o">.</span><span class="n">log_marginal_likelihood</span><span class="p">(</span><span class="n">gp</span><span class="o">.</span><span class="n">kernel_</span><span class="o">.</span><span class="n">theta</span><span class="p">))</span>
<span class="n">X_</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace" title="View documentation for numpy.linspace"><span class="n">np</span><span class="o">.</span><span class="n">linspace</span></a><span class="p">(</span><span class="n">X</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">X</span><span class="o">.</span><span class="n">max</span><span class="p">()</span> <span class="o">+</span> <span class="mi">30</span><span class="p">,</span> <span class="mi">1000</span><span class="p">)[:,</span> <a href="https://docs.scipy.org/doc/numpy/reference/constants.html#numpy.newaxis" title="View documentation for numpy.newaxis"><span class="n">np</span><span class="o">.</span><span class="n">newaxis</span></a><span class="p">]</span>
<span class="n">y_pred</span><span class="p">,</span> <span class="n">y_std</span> <span class="o">=</span> <span class="n">gp</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_</span><span class="p">,</span> <span class="n">return_std</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># Illustration</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter" title="View documentation for matplotlib.pyplot.scatter"><span class="n">plt</span><span class="o">.</span><span class="n">scatter</span></a><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="s1">'k'</span><span class="p">)</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot" title="View documentation for matplotlib.pyplot.plot"><span class="n">plt</span><span class="o">.</span><span class="n">plot</span></a><span class="p">(</span><span class="n">X_</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.fill_between.html#matplotlib.pyplot.fill_between" title="View documentation for matplotlib.pyplot.fill_between"><span class="n">plt</span><span class="o">.</span><span class="n">fill_between</span></a><span class="p">(</span><span class="n">X_</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">y_pred</span> <span class="o">-</span> <span class="n">y_std</span><span class="p">,</span> <span class="n">y_pred</span> <span class="o">+</span> <span class="n">y_std</span><span class="p">,</span>
<span class="n">alpha</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'k'</span><span class="p">)</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xlim.html#matplotlib.pyplot.xlim" title="View documentation for matplotlib.pyplot.xlim"><span class="n">plt</span><span class="o">.</span><span class="n">xlim</span></a><span class="p">(</span><span class="n">X_</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">X_</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xlabel.html#matplotlib.pyplot.xlabel" title="View documentation for matplotlib.pyplot.xlabel"><span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span></a><span class="p">(</span><span class="s2">"Year"</span><span class="p">)</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.ylabel.html#matplotlib.pyplot.ylabel" title="View documentation for matplotlib.pyplot.ylabel"><span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span></a><span class="p">(</span><span class="sa">r</span><span class="s2">"CO$_2$ in ppm"</span><span class="p">)</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.title.html#matplotlib.pyplot.title" title="View documentation for matplotlib.pyplot.title"><span class="n">plt</span><span class="o">.</span><span class="n">title</span></a><span class="p">(</span><span class="sa">r</span><span class="s2">"Atmospheric CO$_2$ concentration at Mauna Loa"</span><span class="p">)</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.tight_layout.html#matplotlib.pyplot.tight_layout" title="View documentation for matplotlib.pyplot.tight_layout"><span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span></a><span class="p">()</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show" title="View documentation for matplotlib.pyplot.show"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 5.806 seconds)</p>
<p><strong>Estimated memory usage:</strong> 37 MB</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-gaussian-process-plot-gpr-co2-py">
<div class="binder-badge docutils container">
<a class="reference external image-reference" href="https://mybinder.org/v2/gh/scikit-learn/scikit-learn/0.22.X?urlpath=lab/tree/notebooks/auto_examples/gaussian_process/plot_gpr_co2.ipynb"><img alt="https://mybinder.org/badge_logo.svg" src="https://mybinder.org/badge_logo.svg" width="150px" /></a>
</div>
<div class="sphx-glr-download docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/22924b84e8589b1ceef00d12afcbd40e/plot_gpr_co2.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_gpr_co2.py</span></code></a></p>
</div>
<div class="sphx-glr-download docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/539cd4c347051b3af27de0cae21eb231/plot_gpr_co2.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">plot_gpr_co2.ipynb</span></code></a></p>
</div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.github.io">Gallery generated by Sphinx-Gallery</a></p>
</div>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2019, scikit-learn developers (BSD License).
<a href="../../_sources/auto_examples/gaussian_process/plot_gpr_co2.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="../../_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
var hide_text = 'Hide prompts and outputs';
var show_text = 'Show prompts and outputs';
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
if (jthis.find('.gp').length > 0) {
var button = $('<span class="copybutton">>>></span>');
button.attr('title', hide_text);
button.data('hidden', 'false');
jthis.prepend(button);
}
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
// define the behavior of the button when it's clicked
$('.copybutton').click(function(e){
e.preventDefault();
var button = $(this);
if (button.data('hidden') === 'false') {
// hide the code output
button.parent().find('.go, .gp, .gt').hide();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'hidden');
button.css('text-decoration', 'line-through');
button.attr('title', show_text);
button.data('hidden', 'true');
} else {
// show the code output
button.parent().find('.go, .gp, .gt').show();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'visible');
button.css('text-decoration', 'none');
button.attr('title', hide_text);
button.data('hidden', 'false');
}
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
/*** Hide navbar when scrolling down ***/
// Returns true when headerlink target matches hash in url
(function() {
hashTargetOnTop = function() {
var hash = window.location.hash;
if ( hash.length < 2 ) { return false; }
var target = document.getElementById( hash.slice(1) );
if ( target === null ) { return false; }
var top = target.getBoundingClientRect().top;
return (top < 2) && (top > -2);
};
// Hide navbar on load if hash target is on top
var navBar = document.getElementById("navbar");
var navBarToggler = document.getElementById("sk-navbar-toggler");
var navBarHeightHidden = "-" + navBar.getBoundingClientRect().height + "px";
var $window = $(window);
hideNavBar = function() {
navBar.style.top = navBarHeightHidden;
};
showNavBar = function() {
navBar.style.top = "0";
}
if (hashTargetOnTop()) {
hideNavBar()
}
var prevScrollpos = window.pageYOffset;
hideOnScroll = function(lastScrollTop) {
if (($window.width() < 768) && (navBarToggler.getAttribute("aria-expanded") === 'true')) {
return;
}
if (lastScrollTop > 2 && (prevScrollpos <= lastScrollTop) || hashTargetOnTop()){
hideNavBar()
} else {
showNavBar()
}
prevScrollpos = lastScrollTop;
};
/*** high performance scroll event listener***/
var raf = window.requestAnimationFrame ||
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.msRequestAnimationFrame ||
window.oRequestAnimationFrame;
var lastScrollTop = $window.scrollTop();
if (raf) {
loop();
}
function loop() {
var scrollTop = $window.scrollTop();
if (lastScrollTop === scrollTop) {
raf(loop);
return;
} else {
lastScrollTop = scrollTop;
hideOnScroll(lastScrollTop);
raf(loop);
}
}
})();
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>