-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathplot_transformed_target.html
465 lines (404 loc) · 49.7 KB
/
plot_transformed_target.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Effect of transforming the targets in regression model — scikit-learn 0.21.3 documentation</title>
<!-- htmltitle is before nature.css - we use this hack to load bootstrap first -->
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="stylesheet" href="../../_static/css/bootstrap.min.css" media="screen" />
<link rel="stylesheet" href="../../_static/css/bootstrap-responsive.css"/>
<link rel="stylesheet" href="../../_static/nature.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '0.21.3',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/js/copybutton.js"></script>
<script type="text/javascript" src="../../_static/js/extra.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_SVG"></script>
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../../about.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="Ledoit-Wolf vs OAS estimation" href="../covariance/plot_lw_vs_oas.html" />
<link rel="prev" title="Column Transformer with Heterogeneous Data Sources" href="plot_column_transformer.html" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<script src="../../_static/js/bootstrap.min.js" type="text/javascript"></script>
<script>
VERSION_SUBDIR = (function(groups) {
return groups ? groups[1] : null;
})(location.href.match(/^https?:\/\/scikit-learn.org\/([^\/]+)/));
</script>
<link rel="canonical" href="https://scikit-learn.org/stable/auto_examples/compose/plot_transformed_target.html" />
<script type="text/javascript">
$("div.buttonNext, div.buttonPrevious").hover(
function () {
$(this).css('background-color', '#FF9C34');
},
function () {
$(this).css('background-color', '#A7D6E2');
}
);
function showMenu() {
var topNav = document.getElementById("scikit-navbar");
if (topNav.className === "navbar") {
topNav.className += " responsive";
} else {
topNav.className = "navbar";
}
};
</script>
</head>
<body>
<div class="header-wrapper">
<div class="header">
<p class="logo"><a href="../../index.html">
<img src="../../_static/scikit-learn-logo-small.png" alt="Logo"/>
</a>
</p><div class="navbar" id="scikit-navbar">
<ul>
<li><a href="../../index.html">Home</a></li>
<li><a href="../../install.html">Installation</a></li>
<li class="btn-li"><div class="btn-group">
<a href="../../documentation.html">Documentation</a>
<a class="btn dropdown-toggle" data-toggle="dropdown">
<span class="caret"></span>
</a>
<ul class="dropdown-menu">
<li class="link-title">Scikit-learn <script>document.write(DOCUMENTATION_OPTIONS.VERSION + (VERSION_SUBDIR ? " (" + VERSION_SUBDIR + ")" : ""));</script></li>
<li><a href="../../tutorial/index.html">Tutorials</a></li>
<li><a href="../../user_guide.html">User guide</a></li>
<li><a href="../../modules/classes.html">API</a></li>
<li><a href="../../glossary.html">Glossary</a></li>
<li><a href="../../faq.html">FAQ</a></li>
<li><a href="../../developers/index.html">Development</a></li>
<li><a href="../../roadmap.html">Roadmap</a></li>
<li><a href="../../about.html">About us</a></li>
<li class="divider"></li>
<script>if (VERSION_SUBDIR != "stable") document.write('<li><a href="http://scikit-learn.org/stable/documentation.html">Stable version</a></li>')</script>
<script>if (VERSION_SUBDIR != "dev") document.write('<li><a href="http://scikit-learn.org/dev/documentation.html">Development version</a></li>')</script>
<li><a href="http://scikit-learn.org/dev/versions.html">All available versions</a></li>
<li><a href="../../_downloads/scikit-learn-docs.pdf">PDF documentation</a></li>
</ul>
</div>
</li>
<li><a href="../index.html">Examples</a></li>
</ul>
<a href="javascript:void(0);" onclick="showMenu()">
<div class="nav-icon">
<div class="hamburger-line"></div>
<div class="hamburger-line"></div>
<div class="hamburger-line"></div>
</div>
</a>
<div class="search_form">
<div class="gcse-search" id="cse" style="width: 100%;"></div>
</div>
</div> <!-- end navbar --></div>
</div>
<!-- GitHub "fork me" ribbon -->
<a href="https://github.com/scikit-learn/scikit-learn">
<img class="fork-me"
style="position: absolute; top: 0; right: 0; border: 0;"
src="../../_static/img/forkme.png"
alt="Fork me on GitHub" />
</a>
<div class="content-wrapper">
<div class="sphinxsidebar">
<div class="sphinxsidebarwrapper">
<div class="rel">
<div class="rellink">
<a href="plot_column_transformer.html"
accesskey="P">Previous
<br/>
<span class="smallrellink">
Column Transf...
</span>
<span class="hiddenrellink">
Column Transformer with Heterogeneous Data Sources
</span>
</a>
</div>
<div class="spacer">
</div>
<div class="rellink">
<a href="../covariance/plot_lw_vs_oas.html"
accesskey="N">Next
<br/>
<span class="smallrellink">
Ledoit-Wolf v...
</span>
<span class="hiddenrellink">
Ledoit-Wolf vs OAS estimation
</span>
</a>
</div>
<!-- Ad a link to the 'up' page -->
<div class="spacer">
</div>
<div class="rellink">
<a href="../index.html">
Up
<br/>
<span class="smallrellink">
Examples
</span>
<span class="hiddenrellink">
Examples
</span>
</a>
</div>
</div>
<p class="doc-version"><b>scikit-learn v0.21.3</b><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a></p>
<p class="citing">Please <b><a href="../../about.html#citing-scikit-learn" style="font-size: 110%;">cite us </a></b>if you use the software.</p>
<ul>
<li><a class="reference internal" href="#">Effect of transforming the targets in regression model</a><ul>
<li><a class="reference internal" href="#synthetic-example">Synthetic example</a></li>
<li><a class="reference internal" href="#real-world-data-set">Real-world data set</a></li>
</ul>
</li>
</ul>
</div>
</div>
<input type="checkbox" id="nav-trigger" class="nav-trigger" checked />
<label for="nav-trigger"></label>
<div class="content">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="sphx-glr-download-link-note admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Click <a class="reference internal" href="#sphx-glr-download-auto-examples-compose-plot-transformed-target-py"><span class="std std-ref">here</span></a> to download the full example code</p>
</div>
<div class="sphx-glr-example-title section" id="effect-of-transforming-the-targets-in-regression-model">
<span id="sphx-glr-auto-examples-compose-plot-transformed-target-py"></span><h1>Effect of transforming the targets in regression model<a class="headerlink" href="#effect-of-transforming-the-targets-in-regression-model" title="Permalink to this headline">¶</a></h1>
<p>In this example, we give an overview of the
<a class="reference internal" href="../../modules/generated/sklearn.compose.TransformedTargetRegressor.html#sklearn.compose.TransformedTargetRegressor" title="sklearn.compose.TransformedTargetRegressor"><code class="xref py py-class docutils literal"><span class="pre">sklearn.compose.TransformedTargetRegressor</span></code></a>. Two examples
illustrate the benefit of transforming the targets before learning a linear
regression model. The first example uses synthetic data while the second
example is based on the Boston housing data set.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># Author: Guillaume Lemaitre <[email protected]></span>
<span class="c1"># License: BSD 3 clause</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">distutils.version</span> <span class="kn">import</span> <span class="n">LooseVersion</span>
<span class="k">print</span><span class="p">(</span><span class="vm">__doc__</span><span class="p">)</span>
</pre></div>
</div>
<div class="section" id="synthetic-example">
<h2>Synthetic example<a class="headerlink" href="#synthetic-example" title="Permalink to this headline">¶</a></h2>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.datasets.make_regression.html#sklearn.datasets.make_regression" title="View documentation for sklearn.datasets.make_regression"><span class="n">make_regression</span></a>
<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split" title="View documentation for sklearn.model_selection.train_test_split"><span class="n">train_test_split</span></a>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.linear_model.RidgeCV.html#sklearn.linear_model.RidgeCV" title="View documentation for sklearn.linear_model.RidgeCV"><span class="n">RidgeCV</span></a>
<span class="kn">from</span> <span class="nn">sklearn.compose</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.compose.TransformedTargetRegressor.html#sklearn.compose.TransformedTargetRegressor" title="View documentation for sklearn.compose.TransformedTargetRegressor"><span class="n">TransformedTargetRegressor</span></a>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error" title="View documentation for sklearn.metrics.median_absolute_error"><span class="n">median_absolute_error</span></a><span class="p">,</span> <a href="../../modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score" title="View documentation for sklearn.metrics.r2_score"><span class="n">r2_score</span></a>
<span class="c1"># `normed` is being deprecated in favor of `density` in histograms</span>
<span class="k">if</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="n">matplotlib</span><span class="o">.</span><span class="n">__version__</span><span class="p">)</span> <span class="o">>=</span> <span class="s1">'2.1'</span><span class="p">:</span>
<span class="n">density_param</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'density'</span><span class="p">:</span> <span class="bp">True</span><span class="p">}</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">density_param</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'normed'</span><span class="p">:</span> <span class="bp">True</span><span class="p">}</span>
</pre></div>
</div>
<p>A synthetic random regression problem is generated. The targets <code class="docutils literal"><span class="pre">y</span></code> are
modified by: (i) translating all targets such that all entries are
non-negative and (ii) applying an exponential function to obtain non-linear
targets which cannot be fitted using a simple linear model.</p>
<p>Therefore, a logarithmic (<code class="docutils literal"><span class="pre">np.log1p</span></code>) and an exponential function
(<code class="docutils literal"><span class="pre">np.expm1</span></code>) will be used to transform the targets before training a linear
regression model and using it for prediction.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.datasets.make_regression.html#sklearn.datasets.make_regression" title="View documentation for sklearn.datasets.make_regression"><span class="n">make_regression</span></a><span class="p">(</span><span class="n">n_samples</span><span class="o">=</span><span class="mi">10000</span><span class="p">,</span> <span class="n">noise</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html#numpy.exp" title="View documentation for numpy.exp"><span class="n">np</span><span class="o">.</span><span class="n">exp</span></a><span class="p">((</span><span class="n">y</span> <span class="o">+</span> <span class="nb">abs</span><span class="p">(</span><span class="n">y</span><span class="o">.</span><span class="n">min</span><span class="p">()))</span> <span class="o">/</span> <span class="mi">200</span><span class="p">)</span>
<span class="n">y_trans</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.log1p.html#numpy.log1p" title="View documentation for numpy.log1p"><span class="n">np</span><span class="o">.</span><span class="n">log1p</span></a><span class="p">(</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
<p>The following illustrate the probability density functions of the target
before and after applying the logarithmic functions.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">f</span><span class="p">,</span> <span class="p">(</span><span class="n">ax0</span><span class="p">,</span> <span class="n">ax1</span><span class="p">)</span> <span class="o">=</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots" title="View documentation for matplotlib.pyplot.subplots"><span class="n">plt</span><span class="o">.</span><span class="n">subplots</span></a><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="o">**</span><span class="n">density_param</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2000</span><span class="p">])</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Probability'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'Target'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">'Target distribution'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">y_trans</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="o">**</span><span class="n">density_param</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Probability'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'Target'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">'Transformed target distribution'</span><span class="p">)</span>
<span class="n">f</span><span class="o">.</span><span class="n">suptitle</span><span class="p">(</span><span class="s2">"Synthetic data"</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="mf">0.035</span><span class="p">)</span>
<span class="n">f</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">(</span><span class="n">rect</span><span class="o">=</span><span class="p">[</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">])</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split" title="View documentation for sklearn.model_selection.train_test_split"><span class="n">train_test_split</span></a><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
<img alt="../../_images/sphx_glr_plot_transformed_target_001.png" class="sphx-glr-single-img" src="../../_images/sphx_glr_plot_transformed_target_001.png" />
<p>At first, a linear model will be applied on the original targets. Due to the
non-linearity, the model trained will not be precise during the
prediction. Subsequently, a logarithmic function is used to linearize the
targets, allowing better prediction even with a similar linear model as
reported by the median absolute error (MAE).</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">f</span><span class="p">,</span> <span class="p">(</span><span class="n">ax0</span><span class="p">,</span> <span class="n">ax1</span><span class="p">)</span> <span class="o">=</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots" title="View documentation for matplotlib.pyplot.subplots"><span class="n">plt</span><span class="o">.</span><span class="n">subplots</span></a><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">sharey</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">regr</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.linear_model.RidgeCV.html#sklearn.linear_model.RidgeCV" title="View documentation for sklearn.linear_model.RidgeCV"><span class="n">RidgeCV</span></a><span class="p">()</span>
<span class="n">regr</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="n">y_pred</span> <span class="o">=</span> <span class="n">regr</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2000</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2000</span><span class="p">],</span> <span class="s1">'--k'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Target predicted'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'True Target'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">'Ridge regression </span><span class="se">\n</span><span class="s1"> without target transformation'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mi">100</span><span class="p">,</span> <span class="mi">1750</span><span class="p">,</span> <span class="sa">r</span><span class="s1">'$R^2$=</span><span class="si">%.2f</span><span class="s1">, MAE=</span><span class="si">%.2f</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span>
<a href="../../modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score" title="View documentation for sklearn.metrics.r2_score"><span class="n">r2_score</span></a><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">),</span> <a href="../../modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error" title="View documentation for sklearn.metrics.median_absolute_error"><span class="n">median_absolute_error</span></a><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)))</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2000</span><span class="p">])</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2000</span><span class="p">])</span>
<span class="n">regr_trans</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.compose.TransformedTargetRegressor.html#sklearn.compose.TransformedTargetRegressor" title="View documentation for sklearn.compose.TransformedTargetRegressor"><span class="n">TransformedTargetRegressor</span></a><span class="p">(</span><span class="n">regressor</span><span class="o">=</span><a href="../../modules/generated/sklearn.linear_model.RidgeCV.html#sklearn.linear_model.RidgeCV" title="View documentation for sklearn.linear_model.RidgeCV"><span class="n">RidgeCV</span></a><span class="p">(),</span>
<span class="n">func</span><span class="o">=</span><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.log1p.html#numpy.log1p" title="View documentation for numpy.log1p"><span class="n">np</span><span class="o">.</span><span class="n">log1p</span></a><span class="p">,</span>
<span class="n">inverse_func</span><span class="o">=</span><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.expm1.html#numpy.expm1" title="View documentation for numpy.expm1"><span class="n">np</span><span class="o">.</span><span class="n">expm1</span></a><span class="p">)</span>
<span class="n">regr_trans</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="n">y_pred</span> <span class="o">=</span> <span class="n">regr_trans</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2000</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2000</span><span class="p">],</span> <span class="s1">'--k'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Target predicted'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'True Target'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">'Ridge regression </span><span class="se">\n</span><span class="s1"> with target transformation'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mi">100</span><span class="p">,</span> <span class="mi">1750</span><span class="p">,</span> <span class="sa">r</span><span class="s1">'$R^2$=</span><span class="si">%.2f</span><span class="s1">, MAE=</span><span class="si">%.2f</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span>
<a href="../../modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score" title="View documentation for sklearn.metrics.r2_score"><span class="n">r2_score</span></a><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">),</span> <a href="../../modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error" title="View documentation for sklearn.metrics.median_absolute_error"><span class="n">median_absolute_error</span></a><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)))</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2000</span><span class="p">])</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2000</span><span class="p">])</span>
<span class="n">f</span><span class="o">.</span><span class="n">suptitle</span><span class="p">(</span><span class="s2">"Synthetic data"</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="mf">0.035</span><span class="p">)</span>
<span class="n">f</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">(</span><span class="n">rect</span><span class="o">=</span><span class="p">[</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">])</span>
</pre></div>
</div>
<img alt="../../_images/sphx_glr_plot_transformed_target_002.png" class="sphx-glr-single-img" src="../../_images/sphx_glr_plot_transformed_target_002.png" />
</div>
<div class="section" id="real-world-data-set">
<h2>Real-world data set<a class="headerlink" href="#real-world-data-set" title="Permalink to this headline">¶</a></h2>
<p>In a similar manner, the boston housing data set is used to show the impact
of transforming the targets before learning a model. In this example, the
targets to be predicted corresponds to the weighted distances to the five
Boston employment centers.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.datasets.load_boston.html#sklearn.datasets.load_boston" title="View documentation for sklearn.datasets.load_boston"><span class="n">load_boston</span></a>
<span class="kn">from</span> <span class="nn">sklearn.preprocessing</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.preprocessing.QuantileTransformer.html#sklearn.preprocessing.QuantileTransformer" title="View documentation for sklearn.preprocessing.QuantileTransformer"><span class="n">QuantileTransformer</span></a><span class="p">,</span> <a href="../../modules/generated/sklearn.preprocessing.quantile_transform.html#sklearn.preprocessing.quantile_transform" title="View documentation for sklearn.preprocessing.quantile_transform"><span class="n">quantile_transform</span></a>
<span class="n">dataset</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.datasets.load_boston.html#sklearn.datasets.load_boston" title="View documentation for sklearn.datasets.load_boston"><span class="n">load_boston</span></a><span class="p">()</span>
<span class="n">target</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array" title="View documentation for numpy.array"><span class="n">np</span><span class="o">.</span><span class="n">array</span></a><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">feature_names</span><span class="p">)</span> <span class="o">==</span> <span class="s2">"DIS"</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">data</span><span class="p">[:,</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_not.html#numpy.logical_not" title="View documentation for numpy.logical_not"><span class="n">np</span><span class="o">.</span><span class="n">logical_not</span></a><span class="p">(</span><span class="n">target</span><span class="p">)]</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">data</span><span class="p">[:,</span> <span class="n">target</span><span class="p">]</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span>
<span class="n">y_trans</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.preprocessing.quantile_transform.html#sklearn.preprocessing.quantile_transform" title="View documentation for sklearn.preprocessing.quantile_transform"><span class="n">quantile_transform</span></a><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">data</span><span class="p">[:,</span> <span class="n">target</span><span class="p">],</span>
<span class="n">n_quantiles</span><span class="o">=</span><span class="mi">300</span><span class="p">,</span>
<span class="n">output_distribution</span><span class="o">=</span><span class="s1">'normal'</span><span class="p">,</span>
<span class="n">copy</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span>
</pre></div>
</div>
<p>A <a class="reference internal" href="../../modules/generated/sklearn.preprocessing.QuantileTransformer.html#sklearn.preprocessing.QuantileTransformer" title="sklearn.preprocessing.QuantileTransformer"><code class="xref py py-class docutils literal"><span class="pre">sklearn.preprocessing.QuantileTransformer</span></code></a> is used such that the
targets follows a normal distribution before applying a
<a class="reference internal" href="../../modules/generated/sklearn.linear_model.RidgeCV.html#sklearn.linear_model.RidgeCV" title="sklearn.linear_model.RidgeCV"><code class="xref py py-class docutils literal"><span class="pre">sklearn.linear_model.RidgeCV</span></code></a> model.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">f</span><span class="p">,</span> <span class="p">(</span><span class="n">ax0</span><span class="p">,</span> <span class="n">ax1</span><span class="p">)</span> <span class="o">=</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots" title="View documentation for matplotlib.pyplot.subplots"><span class="n">plt</span><span class="o">.</span><span class="n">subplots</span></a><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="o">**</span><span class="n">density_param</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Probability'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'Target'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">'Target distribution'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">y_trans</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="o">**</span><span class="n">density_param</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Probability'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'Target'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">'Transformed target distribution'</span><span class="p">)</span>
<span class="n">f</span><span class="o">.</span><span class="n">suptitle</span><span class="p">(</span><span class="s2">"Boston housing data: distance to employment centers"</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="mf">0.035</span><span class="p">)</span>
<span class="n">f</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">(</span><span class="n">rect</span><span class="o">=</span><span class="p">[</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">])</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split" title="View documentation for sklearn.model_selection.train_test_split"><span class="n">train_test_split</span></a><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<img alt="../../_images/sphx_glr_plot_transformed_target_003.png" class="sphx-glr-single-img" src="../../_images/sphx_glr_plot_transformed_target_003.png" />
<p>The effect of the transformer is weaker than on the synthetic data. However,
the transform induces a decrease of the MAE.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">f</span><span class="p">,</span> <span class="p">(</span><span class="n">ax0</span><span class="p">,</span> <span class="n">ax1</span><span class="p">)</span> <span class="o">=</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots" title="View documentation for matplotlib.pyplot.subplots"><span class="n">plt</span><span class="o">.</span><span class="n">subplots</span></a><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">sharey</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">regr</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.linear_model.RidgeCV.html#sklearn.linear_model.RidgeCV" title="View documentation for sklearn.linear_model.RidgeCV"><span class="n">RidgeCV</span></a><span class="p">()</span>
<span class="n">regr</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="n">y_pred</span> <span class="o">=</span> <span class="n">regr</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">],</span> <span class="s1">'--k'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Target predicted'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'True Target'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">'Ridge regression </span><span class="se">\n</span><span class="s1"> without target transformation'</span><span class="p">)</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">9</span><span class="p">,</span> <span class="sa">r</span><span class="s1">'$R^2$=</span><span class="si">%.2f</span><span class="s1">, MAE=</span><span class="si">%.2f</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span>
<a href="../../modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score" title="View documentation for sklearn.metrics.r2_score"><span class="n">r2_score</span></a><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">),</span> <a href="../../modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error" title="View documentation for sklearn.metrics.median_absolute_error"><span class="n">median_absolute_error</span></a><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)))</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">])</span>
<span class="n">ax0</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">])</span>
<span class="n">regr_trans</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.compose.TransformedTargetRegressor.html#sklearn.compose.TransformedTargetRegressor" title="View documentation for sklearn.compose.TransformedTargetRegressor"><span class="n">TransformedTargetRegressor</span></a><span class="p">(</span>
<span class="n">regressor</span><span class="o">=</span><a href="../../modules/generated/sklearn.linear_model.RidgeCV.html#sklearn.linear_model.RidgeCV" title="View documentation for sklearn.linear_model.RidgeCV"><span class="n">RidgeCV</span></a><span class="p">(),</span>
<span class="n">transformer</span><span class="o">=</span><a href="../../modules/generated/sklearn.preprocessing.QuantileTransformer.html#sklearn.preprocessing.QuantileTransformer" title="View documentation for sklearn.preprocessing.QuantileTransformer"><span class="n">QuantileTransformer</span></a><span class="p">(</span><span class="n">n_quantiles</span><span class="o">=</span><span class="mi">300</span><span class="p">,</span>
<span class="n">output_distribution</span><span class="o">=</span><span class="s1">'normal'</span><span class="p">))</span>
<span class="n">regr_trans</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="n">y_pred</span> <span class="o">=</span> <span class="n">regr_trans</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">],</span> <span class="s1">'--k'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Target predicted'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'True Target'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">'Ridge regression </span><span class="se">\n</span><span class="s1"> with target transformation'</span><span class="p">)</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">9</span><span class="p">,</span> <span class="sa">r</span><span class="s1">'$R^2$=</span><span class="si">%.2f</span><span class="s1">, MAE=</span><span class="si">%.2f</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span>
<a href="../../modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score" title="View documentation for sklearn.metrics.r2_score"><span class="n">r2_score</span></a><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">),</span> <a href="../../modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error" title="View documentation for sklearn.metrics.median_absolute_error"><span class="n">median_absolute_error</span></a><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)))</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">])</span>
<span class="n">ax1</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">])</span>
<span class="n">f</span><span class="o">.</span><span class="n">suptitle</span><span class="p">(</span><span class="s2">"Boston housing data: distance to employment centers"</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="mf">0.035</span><span class="p">)</span>
<span class="n">f</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">(</span><span class="n">rect</span><span class="o">=</span><span class="p">[</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">])</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show" title="View documentation for matplotlib.pyplot.show"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
</pre></div>
</div>
<img alt="../../_images/sphx_glr_plot_transformed_target_004.png" class="sphx-glr-single-img" src="../../_images/sphx_glr_plot_transformed_target_004.png" />
<p><strong>Total running time of the script:</strong> ( 0 minutes 1.682 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-compose-plot-transformed-target-py">
<div class="sphx-glr-download docutils container">
<a class="reference download internal" href="../../_downloads/plot_transformed_target.py" download=""><code class="xref download docutils literal"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_transformed_target.py</span></code></a></div>
<div class="sphx-glr-download docutils container">
<a class="reference download internal" href="../../_downloads/plot_transformed_target.ipynb" download=""><code class="xref download docutils literal"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">plot_transformed_target.ipynb</span></code></a></div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.readthedocs.io">Gallery generated by Sphinx-Gallery</a></p>
</div>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
<div class="footer">
© 2007 - 2019, scikit-learn developers (BSD License).
<a href="../../_sources/auto_examples/compose/plot_transformed_target.rst.txt" rel="nofollow">Show this page source</a>
</div>
<div class="rel">
<div class="buttonPrevious">
<a href="plot_column_transformer.html">Previous
</a>
</div>
<div class="buttonNext">
<a href="../covariance/plot_lw_vs_oas.html">Next
</a>
</div>
</div>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script>
(function() {
var cx = '016639176250731907682:tjtqbvtvij0';
var gcse = document.createElement('script'); gcse.type = 'text/javascript'; gcse.async = true;
gcse.src = 'https://cse.google.com/cse.js?cx=' + cx;
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(gcse, s);
})();
</script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>