-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathplot_kde_1d.html
415 lines (356 loc) · 43.4 KB
/
plot_kde_1d.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Simple 1D Kernel Density Estimation — scikit-learn 0.20.4 documentation</title>
<!-- htmltitle is before nature.css - we use this hack to load bootstrap first -->
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="stylesheet" href="../../_static/css/bootstrap.min.css" media="screen" />
<link rel="stylesheet" href="../../_static/css/bootstrap-responsive.css"/>
<link rel="stylesheet" href="../../_static/nature.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '0.20.4',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/js/copybutton.js"></script>
<script type="text/javascript" src="../../_static/js/extra.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_SVG"></script>
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../../about.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="Visualization of MLP weights on MNIST" href="../neural_networks/plot_mnist_filters.html" />
<link rel="prev" title="Kernel Density Estimate of Species Distributions" href="plot_species_kde.html" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<script src="../../_static/js/bootstrap.min.js" type="text/javascript"></script>
<script>
VERSION_SUBDIR = (function(groups) {
return groups ? groups[1] : null;
})(location.href.match(/^https?:\/\/scikit-learn.org\/([^\/]+)/));
</script>
<link rel="canonical" href="https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html" />
<script type="text/javascript">
$("div.buttonNext, div.buttonPrevious").hover(
function () {
$(this).css('background-color', '#FF9C34');
},
function () {
$(this).css('background-color', '#A7D6E2');
}
);
function showMenu() {
var topNav = document.getElementById("scikit-navbar");
if (topNav.className === "navbar") {
topNav.className += " responsive";
} else {
topNav.className = "navbar";
}
};
</script>
</head>
<body>
<div class="header-wrapper">
<div class="header">
<p class="logo"><a href="../../index.html">
<img src="../../_static/scikit-learn-logo-small.png" alt="Logo"/>
</a>
</p><div class="navbar" id="scikit-navbar">
<ul>
<li><a href="../../index.html">Home</a></li>
<li><a href="../../install.html">Installation</a></li>
<li class="btn-li"><div class="btn-group">
<a href="../../documentation.html">Documentation</a>
<a class="btn dropdown-toggle" data-toggle="dropdown">
<span class="caret"></span>
</a>
<ul class="dropdown-menu">
<li class="link-title">Scikit-learn <script>document.write(DOCUMENTATION_OPTIONS.VERSION + (VERSION_SUBDIR ? " (" + VERSION_SUBDIR + ")" : ""));</script></li>
<li><a href="../../tutorial/index.html">Tutorials</a></li>
<li><a href="../../user_guide.html">User guide</a></li>
<li><a href="../../modules/classes.html">API</a></li>
<li><a href="../../glossary.html">Glossary</a></li>
<li><a href="../../faq.html">FAQ</a></li>
<li><a href="../../developers/index.html">Development</a></li>
<li><a href="../../roadmap.html">Roadmap</a></li>
<li class="divider"></li>
<script>if (VERSION_SUBDIR != "stable") document.write('<li><a href="http://scikit-learn.org/stable/documentation.html">Stable version</a></li>')</script>
<script>if (VERSION_SUBDIR != "dev") document.write('<li><a href="http://scikit-learn.org/dev/documentation.html">Development version</a></li>')</script>
<li><a href="http://scikit-learn.org/dev/versions.html">All available versions</a></li>
<li><a href="../../_downloads/scikit-learn-docs.pdf">PDF documentation</a></li>
</ul>
</div>
</li>
<li><a href="../index.html">Examples</a></li>
</ul>
<a href="javascript:void(0);" onclick="showMenu()">
<div class="nav-icon">
<div class="hamburger-line"></div>
<div class="hamburger-line"></div>
<div class="hamburger-line"></div>
</div>
</a>
<div class="search_form">
<div class="gcse-search" id="cse" style="width: 100%;"></div>
</div>
</div> <!-- end navbar --></div>
</div>
<!-- GitHub "fork me" ribbon -->
<a href="https://github.com/scikit-learn/scikit-learn">
<img class="fork-me"
style="position: absolute; top: 0; right: 0; border: 0;"
src="../../_static/img/forkme.png"
alt="Fork me on GitHub" />
</a>
<div class="content-wrapper">
<div class="sphinxsidebar">
<div class="sphinxsidebarwrapper">
<div class="rel">
<div class="rellink">
<a href="plot_species_kde.html"
accesskey="P">Previous
<br/>
<span class="smallrellink">
Kernel Densit...
</span>
<span class="hiddenrellink">
Kernel Density Estimate of Species Distributions
</span>
</a>
</div>
<div class="spacer">
</div>
<div class="rellink">
<a href="../neural_networks/plot_mnist_filters.html"
accesskey="N">Next
<br/>
<span class="smallrellink">
Visualization...
</span>
<span class="hiddenrellink">
Visualization of MLP weights on MNIST
</span>
</a>
</div>
<!-- Ad a link to the 'up' page -->
<div class="spacer">
</div>
<div class="rellink">
<a href="../index.html">
Up
<br/>
<span class="smallrellink">
Examples
</span>
<span class="hiddenrellink">
Examples
</span>
</a>
</div>
</div>
<p class="doc-version"><b>scikit-learn v0.20.4</b><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a></p>
<p class="citing">Please <b><a href="../../about.html#citing-scikit-learn" style="font-size: 110%;">cite us </a></b>if you use the software.</p>
<ul>
<li><a class="reference internal" href="#">Simple 1D Kernel Density Estimation</a></li>
</ul>
</div>
</div>
<input type="checkbox" id="nav-trigger" class="nav-trigger" checked />
<label for="nav-trigger"></label>
<div class="content">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="sphx-glr-download-link-note admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Click <a class="reference internal" href="#sphx-glr-download-auto-examples-neighbors-plot-kde-1d-py"><span class="std std-ref">here</span></a> to download the full example code</p>
</div>
<div class="sphx-glr-example-title section" id="simple-1d-kernel-density-estimation">
<span id="sphx-glr-auto-examples-neighbors-plot-kde-1d-py"></span><h1>Simple 1D Kernel Density Estimation<a class="headerlink" href="#simple-1d-kernel-density-estimation" title="Permalink to this headline">¶</a></h1>
<p>This example uses the <a class="reference internal" href="../../modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity" title="sklearn.neighbors.KernelDensity"><code class="xref py py-class docutils literal"><span class="pre">sklearn.neighbors.KernelDensity</span></code></a> class to
demonstrate the principles of Kernel Density Estimation in one dimension.</p>
<p>The first plot shows one of the problems with using histograms to visualize
the density of points in 1D. Intuitively, a histogram can be thought of as a
scheme in which a unit “block” is stacked above each point on a regular grid.
As the top two panels show, however, the choice of gridding for these blocks
can lead to wildly divergent ideas about the underlying shape of the density
distribution. If we instead center each block on the point it represents, we
get the estimate shown in the bottom left panel. This is a kernel density
estimation with a “top hat” kernel. This idea can be generalized to other
kernel shapes: the bottom-right panel of the first figure shows a Gaussian
kernel density estimate over the same distribution.</p>
<p>Scikit-learn implements efficient kernel density estimation using either
a Ball Tree or KD Tree structure, through the
<a class="reference internal" href="../../modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity" title="sklearn.neighbors.KernelDensity"><code class="xref py py-class docutils literal"><span class="pre">sklearn.neighbors.KernelDensity</span></code></a> estimator. The available kernels
are shown in the second figure of this example.</p>
<p>The third figure compares kernel density estimates for a distribution of 100
samples in 1 dimension. Though this example uses 1D distributions, kernel
density estimation is easily and efficiently extensible to higher dimensions
as well.</p>
<ul class="sphx-glr-horizontal">
<li><img alt="../../_images/sphx_glr_plot_kde_1d_001.png" class="sphx-glr-multi-img first" src="../../_images/sphx_glr_plot_kde_1d_001.png" />
</li>
<li><img alt="../../_images/sphx_glr_plot_kde_1d_002.png" class="sphx-glr-multi-img first" src="../../_images/sphx_glr_plot_kde_1d_002.png" />
</li>
<li><img alt="../../_images/sphx_glr_plot_kde_1d_003.png" class="sphx-glr-multi-img first" src="../../_images/sphx_glr_plot_kde_1d_003.png" />
</li>
</ul>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="c1"># Author: Jake Vanderplas <[email protected]></span>
<span class="c1">#</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">distutils.version</span> <span class="k">import</span> <span class="n">LooseVersion</span>
<span class="kn">from</span> <span class="nn">scipy.stats</span> <span class="k">import</span> <a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm" title="View documentation for scipy.stats.norm"><span class="n">norm</span></a>
<span class="kn">from</span> <span class="nn">sklearn.neighbors</span> <span class="k">import</span> <a href="../../modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity" title="View documentation for sklearn.neighbors.KernelDensity"><span class="n">KernelDensity</span></a>
<span class="c1"># `normed` is being deprecated in favor of `density` in histograms</span>
<span class="k">if</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="n">matplotlib</span><span class="o">.</span><span class="n">__version__</span><span class="p">)</span> <span class="o">>=</span> <span class="s1">'2.1'</span><span class="p">:</span>
<span class="n">density_param</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'density'</span><span class="p">:</span> <span class="kc">True</span><span class="p">}</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">density_param</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'normed'</span><span class="p">:</span> <span class="kc">True</span><span class="p">}</span>
<span class="c1">#----------------------------------------------------------------------</span>
<span class="c1"># Plot the progression of histograms to kernels</span>
<span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">N</span> <span class="o">=</span> <span class="mi">20</span>
<span class="n">X</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html#numpy.concatenate" title="View documentation for numpy.concatenate"><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span></a><span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="mf">0.3</span> <span class="o">*</span> <span class="n">N</span><span class="p">)),</span>
<span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="mf">0.7</span> <span class="o">*</span> <span class="n">N</span><span class="p">))))[:,</span> <a href="https://docs.scipy.org/doc/numpy/reference/constants.html#numpy.newaxis" title="View documentation for numpy.newaxis"><span class="n">np</span><span class="o">.</span><span class="n">newaxis</span></a><span class="p">]</span>
<span class="n">X_plot</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace" title="View documentation for numpy.linspace"><span class="n">np</span><span class="o">.</span><span class="n">linspace</span></a><span class="p">(</span><span class="o">-</span><span class="mi">5</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">1000</span><span class="p">)[:,</span> <a href="https://docs.scipy.org/doc/numpy/reference/constants.html#numpy.newaxis" title="View documentation for numpy.newaxis"><span class="n">np</span><span class="o">.</span><span class="n">newaxis</span></a><span class="p">]</span>
<span class="n">bins</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace" title="View documentation for numpy.linspace"><span class="n">np</span><span class="o">.</span><span class="n">linspace</span></a><span class="p">(</span><span class="o">-</span><span class="mi">5</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots" title="View documentation for matplotlib.pyplot.subplots"><span class="n">plt</span><span class="o">.</span><span class="n">subplots</span></a><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">sharey</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">subplots_adjust</span><span class="p">(</span><span class="n">hspace</span><span class="o">=</span><span class="mf">0.05</span><span class="p">,</span> <span class="n">wspace</span><span class="o">=</span><span class="mf">0.05</span><span class="p">)</span>
<span class="c1"># histogram 1</span>
<span class="n">ax</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">X</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">bins</span><span class="o">=</span><span class="n">bins</span><span class="p">,</span> <span class="n">fc</span><span class="o">=</span><span class="s1">'#AAAAFF'</span><span class="p">,</span> <span class="o">**</span><span class="n">density_param</span><span class="p">)</span>
<span class="n">ax</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="o">-</span><span class="mf">3.5</span><span class="p">,</span> <span class="mf">0.31</span><span class="p">,</span> <span class="s2">"Histogram"</span><span class="p">)</span>
<span class="c1"># histogram 2</span>
<span class="n">ax</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">X</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">bins</span><span class="o">=</span><span class="n">bins</span> <span class="o">+</span> <span class="mf">0.75</span><span class="p">,</span> <span class="n">fc</span><span class="o">=</span><span class="s1">'#AAAAFF'</span><span class="p">,</span> <span class="o">**</span><span class="n">density_param</span><span class="p">)</span>
<span class="n">ax</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="o">-</span><span class="mf">3.5</span><span class="p">,</span> <span class="mf">0.31</span><span class="p">,</span> <span class="s2">"Histogram, bins shifted"</span><span class="p">)</span>
<span class="c1"># tophat KDE</span>
<span class="n">kde</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity" title="View documentation for sklearn.neighbors.KernelDensity"><span class="n">KernelDensity</span></a><span class="p">(</span><span class="n">kernel</span><span class="o">=</span><span class="s1">'tophat'</span><span class="p">,</span> <span class="n">bandwidth</span><span class="o">=</span><span class="mf">0.75</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="n">log_dens</span> <span class="o">=</span> <span class="n">kde</span><span class="o">.</span><span class="n">score_samples</span><span class="p">(</span><span class="n">X_plot</span><span class="p">)</span>
<span class="n">ax</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">fill</span><span class="p">(</span><span class="n">X_plot</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html#numpy.exp" title="View documentation for numpy.exp"><span class="n">np</span><span class="o">.</span><span class="n">exp</span></a><span class="p">(</span><span class="n">log_dens</span><span class="p">),</span> <span class="n">fc</span><span class="o">=</span><span class="s1">'#AAAAFF'</span><span class="p">)</span>
<span class="n">ax</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="o">-</span><span class="mf">3.5</span><span class="p">,</span> <span class="mf">0.31</span><span class="p">,</span> <span class="s2">"Tophat Kernel Density"</span><span class="p">)</span>
<span class="c1"># Gaussian KDE</span>
<span class="n">kde</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity" title="View documentation for sklearn.neighbors.KernelDensity"><span class="n">KernelDensity</span></a><span class="p">(</span><span class="n">kernel</span><span class="o">=</span><span class="s1">'gaussian'</span><span class="p">,</span> <span class="n">bandwidth</span><span class="o">=</span><span class="mf">0.75</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="n">log_dens</span> <span class="o">=</span> <span class="n">kde</span><span class="o">.</span><span class="n">score_samples</span><span class="p">(</span><span class="n">X_plot</span><span class="p">)</span>
<span class="n">ax</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">fill</span><span class="p">(</span><span class="n">X_plot</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html#numpy.exp" title="View documentation for numpy.exp"><span class="n">np</span><span class="o">.</span><span class="n">exp</span></a><span class="p">(</span><span class="n">log_dens</span><span class="p">),</span> <span class="n">fc</span><span class="o">=</span><span class="s1">'#AAAAFF'</span><span class="p">)</span>
<span class="n">ax</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="o">-</span><span class="mf">3.5</span><span class="p">,</span> <span class="mf">0.31</span><span class="p">,</span> <span class="s2">"Gaussian Kernel Density"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">axi</span> <span class="ow">in</span> <span class="n">ax</span><span class="o">.</span><span class="n">ravel</span><span class="p">():</span>
<span class="n">axi</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">X</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html#numpy.full" title="View documentation for numpy.full"><span class="n">np</span><span class="o">.</span><span class="n">full</span></a><span class="p">(</span><span class="n">X</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="o">-</span><span class="mf">0.01</span><span class="p">),</span> <span class="s1">'+k'</span><span class="p">)</span>
<span class="n">axi</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span> <span class="mi">9</span><span class="p">)</span>
<span class="n">axi</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="o">-</span><span class="mf">0.02</span><span class="p">,</span> <span class="mf">0.34</span><span class="p">)</span>
<span class="k">for</span> <span class="n">axi</span> <span class="ow">in</span> <span class="n">ax</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]:</span>
<span class="n">axi</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Normalized Density'</span><span class="p">)</span>
<span class="k">for</span> <span class="n">axi</span> <span class="ow">in</span> <span class="n">ax</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="p">:]:</span>
<span class="n">axi</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'x'</span><span class="p">)</span>
<span class="c1">#----------------------------------------------------------------------</span>
<span class="c1"># Plot all available kernels</span>
<span class="n">X_plot</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace" title="View documentation for numpy.linspace"><span class="n">np</span><span class="o">.</span><span class="n">linspace</span></a><span class="p">(</span><span class="o">-</span><span class="mi">6</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">1000</span><span class="p">)[:,</span> <span class="kc">None</span><span class="p">]</span>
<span class="n">X_src</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html#numpy.zeros" title="View documentation for numpy.zeros"><span class="n">np</span><span class="o">.</span><span class="n">zeros</span></a><span class="p">((</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots" title="View documentation for matplotlib.pyplot.subplots"><span class="n">plt</span><span class="o">.</span><span class="n">subplots</span></a><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">sharex</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">sharey</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">subplots_adjust</span><span class="p">(</span><span class="n">left</span><span class="o">=</span><span class="mf">0.05</span><span class="p">,</span> <span class="n">right</span><span class="o">=</span><span class="mf">0.95</span><span class="p">,</span> <span class="n">hspace</span><span class="o">=</span><span class="mf">0.05</span><span class="p">,</span> <span class="n">wspace</span><span class="o">=</span><span class="mf">0.05</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">format_func</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">loc</span><span class="p">):</span>
<span class="k">if</span> <span class="n">x</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">return</span> <span class="s1">'0'</span>
<span class="k">elif</span> <span class="n">x</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="s1">'h'</span>
<span class="k">elif</span> <span class="n">x</span> <span class="o">==</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="s1">'-h'</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="s1">'</span><span class="si">%i</span><span class="s1">h'</span> <span class="o">%</span> <span class="n">x</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">kernel</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">([</span><span class="s1">'gaussian'</span><span class="p">,</span> <span class="s1">'tophat'</span><span class="p">,</span> <span class="s1">'epanechnikov'</span><span class="p">,</span>
<span class="s1">'exponential'</span><span class="p">,</span> <span class="s1">'linear'</span><span class="p">,</span> <span class="s1">'cosine'</span><span class="p">]):</span>
<span class="n">axi</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">ravel</span><span class="p">()[</span><span class="n">i</span><span class="p">]</span>
<span class="n">log_dens</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity" title="View documentation for sklearn.neighbors.KernelDensity"><span class="n">KernelDensity</span></a><span class="p">(</span><span class="n">kernel</span><span class="o">=</span><span class="n">kernel</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_src</span><span class="p">)</span><span class="o">.</span><span class="n">score_samples</span><span class="p">(</span><span class="n">X_plot</span><span class="p">)</span>
<span class="n">axi</span><span class="o">.</span><span class="n">fill</span><span class="p">(</span><span class="n">X_plot</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html#numpy.exp" title="View documentation for numpy.exp"><span class="n">np</span><span class="o">.</span><span class="n">exp</span></a><span class="p">(</span><span class="n">log_dens</span><span class="p">),</span> <span class="s1">'-k'</span><span class="p">,</span> <span class="n">fc</span><span class="o">=</span><span class="s1">'#AAAAFF'</span><span class="p">)</span>
<span class="n">axi</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="o">-</span><span class="mf">2.6</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">,</span> <span class="n">kernel</span><span class="p">)</span>
<span class="n">axi</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_major_formatter</span><span class="p">(</span><span class="n">plt</span><span class="o">.</span><span class="n">FuncFormatter</span><span class="p">(</span><span class="n">format_func</span><span class="p">))</span>
<span class="n">axi</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_major_locator</span><span class="p">(</span><span class="n">plt</span><span class="o">.</span><span class="n">MultipleLocator</span><span class="p">(</span><span class="mi">1</span><span class="p">))</span>
<span class="n">axi</span><span class="o">.</span><span class="n">yaxis</span><span class="o">.</span><span class="n">set_major_locator</span><span class="p">(</span><span class="n">plt</span><span class="o">.</span><span class="n">NullLocator</span><span class="p">())</span>
<span class="n">axi</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">)</span>
<span class="n">axi</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">(</span><span class="o">-</span><span class="mf">2.9</span><span class="p">,</span> <span class="mf">2.9</span><span class="p">)</span>
<span class="n">ax</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">'Available Kernels'</span><span class="p">)</span>
<span class="c1">#----------------------------------------------------------------------</span>
<span class="c1"># Plot a 1D density example</span>
<span class="n">N</span> <span class="o">=</span> <span class="mi">100</span>
<span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">X</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html#numpy.concatenate" title="View documentation for numpy.concatenate"><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span></a><span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="mf">0.3</span> <span class="o">*</span> <span class="n">N</span><span class="p">)),</span>
<span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="mf">0.7</span> <span class="o">*</span> <span class="n">N</span><span class="p">))))[:,</span> <a href="https://docs.scipy.org/doc/numpy/reference/constants.html#numpy.newaxis" title="View documentation for numpy.newaxis"><span class="n">np</span><span class="o">.</span><span class="n">newaxis</span></a><span class="p">]</span>
<span class="n">X_plot</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace" title="View documentation for numpy.linspace"><span class="n">np</span><span class="o">.</span><span class="n">linspace</span></a><span class="p">(</span><span class="o">-</span><span class="mi">5</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">1000</span><span class="p">)[:,</span> <a href="https://docs.scipy.org/doc/numpy/reference/constants.html#numpy.newaxis" title="View documentation for numpy.newaxis"><span class="n">np</span><span class="o">.</span><span class="n">newaxis</span></a><span class="p">]</span>
<span class="n">true_dens</span> <span class="o">=</span> <span class="p">(</span><span class="mf">0.3</span> <span class="o">*</span> <a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm" title="View documentation for scipy.stats.norm"><span class="n">norm</span></a><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">pdf</span><span class="p">(</span><span class="n">X_plot</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">])</span>
<span class="o">+</span> <span class="mf">0.7</span> <span class="o">*</span> <a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm" title="View documentation for scipy.stats.norm"><span class="n">norm</span></a><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">pdf</span><span class="p">(</span><span class="n">X_plot</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]))</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots" title="View documentation for matplotlib.pyplot.subplots"><span class="n">plt</span><span class="o">.</span><span class="n">subplots</span></a><span class="p">()</span>
<span class="n">ax</span><span class="o">.</span><span class="n">fill</span><span class="p">(</span><span class="n">X_plot</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">true_dens</span><span class="p">,</span> <span class="n">fc</span><span class="o">=</span><span class="s1">'black'</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="s1">'input distribution'</span><span class="p">)</span>
<span class="k">for</span> <span class="n">kernel</span> <span class="ow">in</span> <span class="p">[</span><span class="s1">'gaussian'</span><span class="p">,</span> <span class="s1">'tophat'</span><span class="p">,</span> <span class="s1">'epanechnikov'</span><span class="p">]:</span>
<span class="n">kde</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity" title="View documentation for sklearn.neighbors.KernelDensity"><span class="n">KernelDensity</span></a><span class="p">(</span><span class="n">kernel</span><span class="o">=</span><span class="n">kernel</span><span class="p">,</span> <span class="n">bandwidth</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="n">log_dens</span> <span class="o">=</span> <span class="n">kde</span><span class="o">.</span><span class="n">score_samples</span><span class="p">(</span><span class="n">X_plot</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">X_plot</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html#numpy.exp" title="View documentation for numpy.exp"><span class="n">np</span><span class="o">.</span><span class="n">exp</span></a><span class="p">(</span><span class="n">log_dens</span><span class="p">),</span> <span class="s1">'-'</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="s2">"kernel = '</span><span class="si">{0}</span><span class="s2">'"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">kernel</span><span class="p">))</span>
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mi">6</span><span class="p">,</span> <span class="mf">0.38</span><span class="p">,</span> <span class="s2">"N=</span><span class="si">{0}</span><span class="s2"> points"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">N</span><span class="p">))</span>
<span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">'upper left'</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">X</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="o">-</span><span class="mf">0.005</span> <span class="o">-</span> <span class="mf">0.01</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">(</span><span class="n">X</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="s1">'+k'</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">(</span><span class="o">-</span><span class="mi">4</span><span class="p">,</span> <span class="mi">9</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="o">-</span><span class="mf">0.02</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">)</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show" title="View documentation for matplotlib.pyplot.show"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.502 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-neighbors-plot-kde-1d-py">
<div class="sphx-glr-download docutils container">
<a class="reference download internal" href="../../_downloads/plot_kde_1d.py" download=""><code class="xref download docutils literal"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_kde_1d.py</span></code></a></div>
<div class="sphx-glr-download docutils container">
<a class="reference download internal" href="../../_downloads/plot_kde_1d.ipynb" download=""><code class="xref download docutils literal"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">plot_kde_1d.ipynb</span></code></a></div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.github.io">Gallery generated by Sphinx-Gallery</a></p>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
<div class="footer">
© 2007 - 2018, scikit-learn developers (BSD License).
<a href="../../_sources/auto_examples/neighbors/plot_kde_1d.rst.txt" rel="nofollow">Show this page source</a>
</div>
<div class="rel">
<div class="buttonPrevious">
<a href="plot_species_kde.html">Previous
</a>
</div>
<div class="buttonNext">
<a href="../neural_networks/plot_mnist_filters.html">Next
</a>
</div>
</div>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script>
(function() {
var cx = '016639176250731907682:tjtqbvtvij0';
var gcse = document.createElement('script'); gcse.type = 'text/javascript'; gcse.async = true;
gcse.src = 'https://cse.google.com/cse.js?cx=' + cx;
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(gcse, s);
})();
</script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>