-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathplot_mahalanobis_distances.html
405 lines (357 loc) · 39.1 KB
/
plot_mahalanobis_distances.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Robust covariance estimation and Mahalanobis distances relevance — scikit-learn 0.20.4 documentation</title>
<!-- htmltitle is before nature.css - we use this hack to load bootstrap first -->
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="stylesheet" href="../../_static/css/bootstrap.min.css" media="screen" />
<link rel="stylesheet" href="../../_static/css/bootstrap-responsive.css"/>
<link rel="stylesheet" href="../../_static/nature.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '0.20.4',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/js/copybutton.js"></script>
<script type="text/javascript" src="../../_static/js/extra.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_SVG"></script>
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../../about.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="Robust vs Empirical covariance estimate" href="plot_robust_vs_empirical_covariance.html" />
<link rel="prev" title="Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood" href="plot_covariance_estimation.html" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<script src="../../_static/js/bootstrap.min.js" type="text/javascript"></script>
<script>
VERSION_SUBDIR = (function(groups) {
return groups ? groups[1] : null;
})(location.href.match(/^https?:\/\/scikit-learn.org\/([^\/]+)/));
</script>
<link rel="canonical" href="https://scikit-learn.org/stable/auto_examples/covariance/plot_mahalanobis_distances.html" />
<script type="text/javascript">
$("div.buttonNext, div.buttonPrevious").hover(
function () {
$(this).css('background-color', '#FF9C34');
},
function () {
$(this).css('background-color', '#A7D6E2');
}
);
function showMenu() {
var topNav = document.getElementById("scikit-navbar");
if (topNav.className === "navbar") {
topNav.className += " responsive";
} else {
topNav.className = "navbar";
}
};
</script>
</head>
<body>
<div class="header-wrapper">
<div class="header">
<p class="logo"><a href="../../index.html">
<img src="../../_static/scikit-learn-logo-small.png" alt="Logo"/>
</a>
</p><div class="navbar" id="scikit-navbar">
<ul>
<li><a href="../../index.html">Home</a></li>
<li><a href="../../install.html">Installation</a></li>
<li class="btn-li"><div class="btn-group">
<a href="../../documentation.html">Documentation</a>
<a class="btn dropdown-toggle" data-toggle="dropdown">
<span class="caret"></span>
</a>
<ul class="dropdown-menu">
<li class="link-title">Scikit-learn <script>document.write(DOCUMENTATION_OPTIONS.VERSION + (VERSION_SUBDIR ? " (" + VERSION_SUBDIR + ")" : ""));</script></li>
<li><a href="../../tutorial/index.html">Tutorials</a></li>
<li><a href="../../user_guide.html">User guide</a></li>
<li><a href="../../modules/classes.html">API</a></li>
<li><a href="../../glossary.html">Glossary</a></li>
<li><a href="../../faq.html">FAQ</a></li>
<li><a href="../../developers/index.html">Development</a></li>
<li><a href="../../roadmap.html">Roadmap</a></li>
<li class="divider"></li>
<script>if (VERSION_SUBDIR != "stable") document.write('<li><a href="http://scikit-learn.org/stable/documentation.html">Stable version</a></li>')</script>
<script>if (VERSION_SUBDIR != "dev") document.write('<li><a href="http://scikit-learn.org/dev/documentation.html">Development version</a></li>')</script>
<li><a href="http://scikit-learn.org/dev/versions.html">All available versions</a></li>
<li><a href="../../_downloads/scikit-learn-docs.pdf">PDF documentation</a></li>
</ul>
</div>
</li>
<li><a href="../index.html">Examples</a></li>
</ul>
<a href="javascript:void(0);" onclick="showMenu()">
<div class="nav-icon">
<div class="hamburger-line"></div>
<div class="hamburger-line"></div>
<div class="hamburger-line"></div>
</div>
</a>
<div class="search_form">
<div class="gcse-search" id="cse" style="width: 100%;"></div>
</div>
</div> <!-- end navbar --></div>
</div>
<!-- GitHub "fork me" ribbon -->
<a href="https://github.com/scikit-learn/scikit-learn">
<img class="fork-me"
style="position: absolute; top: 0; right: 0; border: 0;"
src="../../_static/img/forkme.png"
alt="Fork me on GitHub" />
</a>
<div class="content-wrapper">
<div class="sphinxsidebar">
<div class="sphinxsidebarwrapper">
<div class="rel">
<div class="rellink">
<a href="plot_covariance_estimation.html"
accesskey="P">Previous
<br/>
<span class="smallrellink">
Shrinkage cov...
</span>
<span class="hiddenrellink">
Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood
</span>
</a>
</div>
<div class="spacer">
</div>
<div class="rellink">
<a href="plot_robust_vs_empirical_covariance.html"
accesskey="N">Next
<br/>
<span class="smallrellink">
Robust vs Emp...
</span>
<span class="hiddenrellink">
Robust vs Empirical covariance estimate
</span>
</a>
</div>
<!-- Ad a link to the 'up' page -->
<div class="spacer">
</div>
<div class="rellink">
<a href="../index.html">
Up
<br/>
<span class="smallrellink">
Examples
</span>
<span class="hiddenrellink">
Examples
</span>
</a>
</div>
</div>
<p class="doc-version"><b>scikit-learn v0.20.4</b><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a></p>
<p class="citing">Please <b><a href="../../about.html#citing-scikit-learn" style="font-size: 110%;">cite us </a></b>if you use the software.</p>
<ul>
<li><a class="reference internal" href="#">Robust covariance estimation and Mahalanobis distances relevance</a></li>
</ul>
</div>
</div>
<input type="checkbox" id="nav-trigger" class="nav-trigger" checked />
<label for="nav-trigger"></label>
<div class="content">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="sphx-glr-download-link-note admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Click <a class="reference internal" href="#sphx-glr-download-auto-examples-covariance-plot-mahalanobis-distances-py"><span class="std std-ref">here</span></a> to download the full example code</p>
</div>
<div class="sphx-glr-example-title section" id="robust-covariance-estimation-and-mahalanobis-distances-relevance">
<span id="sphx-glr-auto-examples-covariance-plot-mahalanobis-distances-py"></span><h1>Robust covariance estimation and Mahalanobis distances relevance<a class="headerlink" href="#robust-covariance-estimation-and-mahalanobis-distances-relevance" title="Permalink to this headline">¶</a></h1>
<p>An example to show covariance estimation with the Mahalanobis
distances on Gaussian distributed data.</p>
<p>For Gaussian distributed data, the distance of an observation
<span class="math">\(x_i\)</span> to the mode of the distribution can be computed using its
Mahalanobis distance: <span class="math">\(d_{(\mu,\Sigma)}(x_i)^2 = (x_i -
\mu)'\Sigma^{-1}(x_i - \mu)\)</span> where <span class="math">\(\mu\)</span> and <span class="math">\(\Sigma\)</span> are
the location and the covariance of the underlying Gaussian
distribution.</p>
<p>In practice, <span class="math">\(\mu\)</span> and <span class="math">\(\Sigma\)</span> are replaced by some
estimates. The usual covariance maximum likelihood estimate is very
sensitive to the presence of outliers in the data set and therefor,
the corresponding Mahalanobis distances are. One would better have to
use a robust estimator of covariance to guarantee that the estimation is
resistant to “erroneous” observations in the data set and that the
associated Mahalanobis distances accurately reflect the true
organisation of the observations.</p>
<p>The Minimum Covariance Determinant estimator is a robust,
high-breakdown point (i.e. it can be used to estimate the covariance
matrix of highly contaminated datasets, up to
<span class="math">\(\frac{n_\text{samples}-n_\text{features}-1}{2}\)</span> outliers)
estimator of covariance. The idea is to find
<span class="math">\(\frac{n_\text{samples}+n_\text{features}+1}{2}\)</span>
observations whose empirical covariance has the smallest determinant,
yielding a “pure” subset of observations from which to compute
standards estimates of location and covariance.</p>
<p>The Minimum Covariance Determinant estimator (MCD) has been introduced
by P.J.Rousseuw in [1].</p>
<p>This example illustrates how the Mahalanobis distances are affected by
outlying data: observations drawn from a contaminating distribution
are not distinguishable from the observations coming from the real,
Gaussian distribution that one may want to work with. Using MCD-based
Mahalanobis distances, the two populations become
distinguishable. Associated applications are outliers detection,
observations ranking, clustering, …
For visualization purpose, the cubic root of the Mahalanobis distances
are represented in the boxplot, as Wilson and Hilferty suggest [2]</p>
<dl class="docutils">
<dt>[1] P. J. Rousseeuw. Least median of squares regression. J. Am</dt>
<dd>Stat Ass, 79:871, 1984.</dd>
<dt>[2] Wilson, E. B., & Hilferty, M. M. (1931). The distribution of chi-square.</dt>
<dd>Proceedings of the National Academy of Sciences of the United States
of America, 17, 684-688.</dd>
</dl>
<img alt="../../_images/sphx_glr_plot_mahalanobis_distances_001.png" class="sphx-glr-single-img" src="../../_images/sphx_glr_plot_mahalanobis_distances_001.png" />
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none"><div class="highlight"><pre><span></span>
</pre></div>
</div>
<div class="line-block">
<div class="line"><br /></div>
</div>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="vm">__doc__</span><span class="p">)</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">sklearn.covariance</span> <span class="k">import</span> <a href="../../modules/generated/sklearn.covariance.EmpiricalCovariance.html#sklearn.covariance.EmpiricalCovariance" title="View documentation for sklearn.covariance.EmpiricalCovariance"><span class="n">EmpiricalCovariance</span></a><span class="p">,</span> <a href="../../modules/generated/sklearn.covariance.MinCovDet.html#sklearn.covariance.MinCovDet" title="View documentation for sklearn.covariance.MinCovDet"><span class="n">MinCovDet</span></a>
<span class="n">n_samples</span> <span class="o">=</span> <span class="mi">125</span>
<span class="n">n_outliers</span> <span class="o">=</span> <span class="mi">25</span>
<span class="n">n_features</span> <span class="o">=</span> <span class="mi">2</span>
<span class="c1"># generate data</span>
<span class="n">gen_cov</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html#numpy.eye" title="View documentation for numpy.eye"><span class="n">np</span><span class="o">.</span><span class="n">eye</span></a><span class="p">(</span><span class="n">n_features</span><span class="p">)</span>
<span class="n">gen_cov</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="mf">2.</span>
<span class="n">X</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot" title="View documentation for numpy.dot"><span class="n">np</span><span class="o">.</span><span class="n">dot</span></a><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">n_samples</span><span class="p">,</span> <span class="n">n_features</span><span class="p">),</span> <span class="n">gen_cov</span><span class="p">)</span>
<span class="c1"># add some outliers</span>
<span class="n">outliers_cov</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html#numpy.eye" title="View documentation for numpy.eye"><span class="n">np</span><span class="o">.</span><span class="n">eye</span></a><span class="p">(</span><span class="n">n_features</span><span class="p">)</span>
<span class="n">outliers_cov</span><span class="p">[</span><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange" title="View documentation for numpy.arange"><span class="n">np</span><span class="o">.</span><span class="n">arange</span></a><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n_features</span><span class="p">),</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange" title="View documentation for numpy.arange"><span class="n">np</span><span class="o">.</span><span class="n">arange</span></a><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n_features</span><span class="p">)]</span> <span class="o">=</span> <span class="mf">7.</span>
<span class="n">X</span><span class="p">[</span><span class="o">-</span><span class="n">n_outliers</span><span class="p">:]</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot" title="View documentation for numpy.dot"><span class="n">np</span><span class="o">.</span><span class="n">dot</span></a><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">n_outliers</span><span class="p">,</span> <span class="n">n_features</span><span class="p">),</span> <span class="n">outliers_cov</span><span class="p">)</span>
<span class="c1"># fit a Minimum Covariance Determinant (MCD) robust estimator to data</span>
<span class="n">robust_cov</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.covariance.MinCovDet.html#sklearn.covariance.MinCovDet" title="View documentation for sklearn.covariance.MinCovDet"><span class="n">MinCovDet</span></a><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="c1"># compare estimators learnt from the full data set with true parameters</span>
<span class="n">emp_cov</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.covariance.EmpiricalCovariance.html#sklearn.covariance.EmpiricalCovariance" title="View documentation for sklearn.covariance.EmpiricalCovariance"><span class="n">EmpiricalCovariance</span></a><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="c1"># #############################################################################</span>
<span class="c1"># Display results</span>
<span class="n">fig</span> <span class="o">=</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure" title="View documentation for matplotlib.pyplot.figure"><span class="n">plt</span><span class="o">.</span><span class="n">figure</span></a><span class="p">()</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots_adjust.html#matplotlib.pyplot.subplots_adjust" title="View documentation for matplotlib.pyplot.subplots_adjust"><span class="n">plt</span><span class="o">.</span><span class="n">subplots_adjust</span></a><span class="p">(</span><span class="n">hspace</span><span class="o">=-.</span><span class="mi">1</span><span class="p">,</span> <span class="n">wspace</span><span class="o">=.</span><span class="mi">4</span><span class="p">,</span> <span class="n">top</span><span class="o">=.</span><span class="mi">95</span><span class="p">,</span> <span class="n">bottom</span><span class="o">=.</span><span class="mi">05</span><span class="p">)</span>
<span class="c1"># Show data set</span>
<span class="n">subfig1</span> <span class="o">=</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplot.html#matplotlib.pyplot.subplot" title="View documentation for matplotlib.pyplot.subplot"><span class="n">plt</span><span class="o">.</span><span class="n">subplot</span></a><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">inlier_plot</span> <span class="o">=</span> <span class="n">subfig1</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">X</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">'black'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'inliers'</span><span class="p">)</span>
<span class="n">outlier_plot</span> <span class="o">=</span> <span class="n">subfig1</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">][</span><span class="o">-</span><span class="n">n_outliers</span><span class="p">:],</span> <span class="n">X</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">][</span><span class="o">-</span><span class="n">n_outliers</span><span class="p">:],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">'red'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'outliers'</span><span class="p">)</span>
<span class="n">subfig1</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">(</span><span class="n">subfig1</span><span class="o">.</span><span class="n">get_xlim</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="mf">11.</span><span class="p">)</span>
<span class="n">subfig1</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s2">"Mahalanobis distances of a contaminated data set:"</span><span class="p">)</span>
<span class="c1"># Show contours of the distance functions</span>
<span class="n">xx</span><span class="p">,</span> <span class="n">yy</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.html#numpy.meshgrid" title="View documentation for numpy.meshgrid"><span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span></a><span class="p">(</span><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace" title="View documentation for numpy.linspace"><span class="n">np</span><span class="o">.</span><span class="n">linspace</span></a><span class="p">(</span><a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xlim.html#matplotlib.pyplot.xlim" title="View documentation for matplotlib.pyplot.xlim"><span class="n">plt</span><span class="o">.</span><span class="n">xlim</span></a><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xlim.html#matplotlib.pyplot.xlim" title="View documentation for matplotlib.pyplot.xlim"><span class="n">plt</span><span class="o">.</span><span class="n">xlim</span></a><span class="p">()[</span><span class="mi">1</span><span class="p">],</span> <span class="mi">100</span><span class="p">),</span>
<a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace" title="View documentation for numpy.linspace"><span class="n">np</span><span class="o">.</span><span class="n">linspace</span></a><span class="p">(</span><a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.ylim.html#matplotlib.pyplot.ylim" title="View documentation for matplotlib.pyplot.ylim"><span class="n">plt</span><span class="o">.</span><span class="n">ylim</span></a><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.ylim.html#matplotlib.pyplot.ylim" title="View documentation for matplotlib.pyplot.ylim"><span class="n">plt</span><span class="o">.</span><span class="n">ylim</span></a><span class="p">()[</span><span class="mi">1</span><span class="p">],</span> <span class="mi">100</span><span class="p">))</span>
<span class="n">zz</span> <span class="o">=</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.c_.html#numpy.c_" title="View documentation for numpy.c_"><span class="n">np</span><span class="o">.</span><span class="n">c_</span></a><span class="p">[</span><span class="n">xx</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">yy</span><span class="o">.</span><span class="n">ravel</span><span class="p">()]</span>
<span class="n">mahal_emp_cov</span> <span class="o">=</span> <span class="n">emp_cov</span><span class="o">.</span><span class="n">mahalanobis</span><span class="p">(</span><span class="n">zz</span><span class="p">)</span>
<span class="n">mahal_emp_cov</span> <span class="o">=</span> <span class="n">mahal_emp_cov</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">xx</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="n">emp_cov_contour</span> <span class="o">=</span> <span class="n">subfig1</span><span class="o">.</span><span class="n">contour</span><span class="p">(</span><span class="n">xx</span><span class="p">,</span> <span class="n">yy</span><span class="p">,</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html#numpy.sqrt" title="View documentation for numpy.sqrt"><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span></a><span class="p">(</span><span class="n">mahal_emp_cov</span><span class="p">),</span>
<span class="n">cmap</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">PuBu_r</span><span class="p">,</span>
<span class="n">linestyles</span><span class="o">=</span><span class="s1">'dashed'</span><span class="p">)</span>
<span class="n">mahal_robust_cov</span> <span class="o">=</span> <span class="n">robust_cov</span><span class="o">.</span><span class="n">mahalanobis</span><span class="p">(</span><span class="n">zz</span><span class="p">)</span>
<span class="n">mahal_robust_cov</span> <span class="o">=</span> <span class="n">mahal_robust_cov</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">xx</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="n">robust_contour</span> <span class="o">=</span> <span class="n">subfig1</span><span class="o">.</span><span class="n">contour</span><span class="p">(</span><span class="n">xx</span><span class="p">,</span> <span class="n">yy</span><span class="p">,</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html#numpy.sqrt" title="View documentation for numpy.sqrt"><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span></a><span class="p">(</span><span class="n">mahal_robust_cov</span><span class="p">),</span>
<span class="n">cmap</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">YlOrBr_r</span><span class="p">,</span> <span class="n">linestyles</span><span class="o">=</span><span class="s1">'dotted'</span><span class="p">)</span>
<span class="n">subfig1</span><span class="o">.</span><span class="n">legend</span><span class="p">([</span><span class="n">emp_cov_contour</span><span class="o">.</span><span class="n">collections</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">robust_contour</span><span class="o">.</span><span class="n">collections</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">inlier_plot</span><span class="p">,</span> <span class="n">outlier_plot</span><span class="p">],</span>
<span class="p">[</span><span class="s1">'MLE dist'</span><span class="p">,</span> <span class="s1">'robust dist'</span><span class="p">,</span> <span class="s1">'inliers'</span><span class="p">,</span> <span class="s1">'outliers'</span><span class="p">],</span>
<span class="n">loc</span><span class="o">=</span><span class="s2">"upper right"</span><span class="p">,</span> <span class="n">borderaxespad</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xticks.html#matplotlib.pyplot.xticks" title="View documentation for matplotlib.pyplot.xticks"><span class="n">plt</span><span class="o">.</span><span class="n">xticks</span></a><span class="p">(())</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.yticks.html#matplotlib.pyplot.yticks" title="View documentation for matplotlib.pyplot.yticks"><span class="n">plt</span><span class="o">.</span><span class="n">yticks</span></a><span class="p">(())</span>
<span class="c1"># Plot the scores for each point</span>
<span class="n">emp_mahal</span> <span class="o">=</span> <span class="n">emp_cov</span><span class="o">.</span><span class="n">mahalanobis</span><span class="p">(</span><span class="n">X</span> <span class="o">-</span> <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean" title="View documentation for numpy.mean"><span class="n">np</span><span class="o">.</span><span class="n">mean</span></a><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="mi">0</span><span class="p">))</span> <span class="o">**</span> <span class="p">(</span><span class="mf">0.33</span><span class="p">)</span>
<span class="n">subfig2</span> <span class="o">=</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplot.html#matplotlib.pyplot.subplot" title="View documentation for matplotlib.pyplot.subplot"><span class="n">plt</span><span class="o">.</span><span class="n">subplot</span></a><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="n">subfig2</span><span class="o">.</span><span class="n">boxplot</span><span class="p">([</span><span class="n">emp_mahal</span><span class="p">[:</span><span class="o">-</span><span class="n">n_outliers</span><span class="p">],</span> <span class="n">emp_mahal</span><span class="p">[</span><span class="o">-</span><span class="n">n_outliers</span><span class="p">:]],</span> <span class="n">widths</span><span class="o">=.</span><span class="mi">25</span><span class="p">)</span>
<span class="n">subfig2</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html#numpy.full" title="View documentation for numpy.full"><span class="n">np</span><span class="o">.</span><span class="n">full</span></a><span class="p">(</span><span class="n">n_samples</span> <span class="o">-</span> <span class="n">n_outliers</span><span class="p">,</span> <span class="mf">1.26</span><span class="p">),</span>
<span class="n">emp_mahal</span><span class="p">[:</span><span class="o">-</span><span class="n">n_outliers</span><span class="p">],</span> <span class="s1">'+k'</span><span class="p">,</span> <span class="n">markeredgewidth</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">subfig2</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html#numpy.full" title="View documentation for numpy.full"><span class="n">np</span><span class="o">.</span><span class="n">full</span></a><span class="p">(</span><span class="n">n_outliers</span><span class="p">,</span> <span class="mf">2.26</span><span class="p">),</span>
<span class="n">emp_mahal</span><span class="p">[</span><span class="o">-</span><span class="n">n_outliers</span><span class="p">:],</span> <span class="s1">'+k'</span><span class="p">,</span> <span class="n">markeredgewidth</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">subfig2</span><span class="o">.</span><span class="n">axes</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">((</span><span class="s1">'inliers'</span><span class="p">,</span> <span class="s1">'outliers'</span><span class="p">),</span> <span class="n">size</span><span class="o">=</span><span class="mi">15</span><span class="p">)</span>
<span class="n">subfig2</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="sa">r</span><span class="s2">"$\sqrt[3]{\rm{(Mahal. dist.)}}$"</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
<span class="n">subfig2</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s2">"1. from non-robust estimates</span><span class="se">\n</span><span class="s2">(Maximum Likelihood)"</span><span class="p">)</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.yticks.html#matplotlib.pyplot.yticks" title="View documentation for matplotlib.pyplot.yticks"><span class="n">plt</span><span class="o">.</span><span class="n">yticks</span></a><span class="p">(())</span>
<span class="n">robust_mahal</span> <span class="o">=</span> <span class="n">robust_cov</span><span class="o">.</span><span class="n">mahalanobis</span><span class="p">(</span><span class="n">X</span> <span class="o">-</span> <span class="n">robust_cov</span><span class="o">.</span><span class="n">location_</span><span class="p">)</span> <span class="o">**</span> <span class="p">(</span><span class="mf">0.33</span><span class="p">)</span>
<span class="n">subfig3</span> <span class="o">=</span> <a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplot.html#matplotlib.pyplot.subplot" title="View documentation for matplotlib.pyplot.subplot"><span class="n">plt</span><span class="o">.</span><span class="n">subplot</span></a><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
<span class="n">subfig3</span><span class="o">.</span><span class="n">boxplot</span><span class="p">([</span><span class="n">robust_mahal</span><span class="p">[:</span><span class="o">-</span><span class="n">n_outliers</span><span class="p">],</span> <span class="n">robust_mahal</span><span class="p">[</span><span class="o">-</span><span class="n">n_outliers</span><span class="p">:]],</span>
<span class="n">widths</span><span class="o">=.</span><span class="mi">25</span><span class="p">)</span>
<span class="n">subfig3</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html#numpy.full" title="View documentation for numpy.full"><span class="n">np</span><span class="o">.</span><span class="n">full</span></a><span class="p">(</span><span class="n">n_samples</span> <span class="o">-</span> <span class="n">n_outliers</span><span class="p">,</span> <span class="mf">1.26</span><span class="p">),</span>
<span class="n">robust_mahal</span><span class="p">[:</span><span class="o">-</span><span class="n">n_outliers</span><span class="p">],</span> <span class="s1">'+k'</span><span class="p">,</span> <span class="n">markeredgewidth</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">subfig3</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html#numpy.full" title="View documentation for numpy.full"><span class="n">np</span><span class="o">.</span><span class="n">full</span></a><span class="p">(</span><span class="n">n_outliers</span><span class="p">,</span> <span class="mf">2.26</span><span class="p">),</span>
<span class="n">robust_mahal</span><span class="p">[</span><span class="o">-</span><span class="n">n_outliers</span><span class="p">:],</span> <span class="s1">'+k'</span><span class="p">,</span> <span class="n">markeredgewidth</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">subfig3</span><span class="o">.</span><span class="n">axes</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">((</span><span class="s1">'inliers'</span><span class="p">,</span> <span class="s1">'outliers'</span><span class="p">),</span> <span class="n">size</span><span class="o">=</span><span class="mi">15</span><span class="p">)</span>
<span class="n">subfig3</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="sa">r</span><span class="s2">"$\sqrt[3]{\rm{(Mahal. dist.)}}$"</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
<span class="n">subfig3</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s2">"2. from robust estimates</span><span class="se">\n</span><span class="s2">(Minimum Covariance Determinant)"</span><span class="p">)</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.yticks.html#matplotlib.pyplot.yticks" title="View documentation for matplotlib.pyplot.yticks"><span class="n">plt</span><span class="o">.</span><span class="n">yticks</span></a><span class="p">(())</span>
<a href="https://matplotlib.org/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show" title="View documentation for matplotlib.pyplot.show"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.327 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-covariance-plot-mahalanobis-distances-py">
<div class="sphx-glr-download docutils container">
<a class="reference download internal" href="../../_downloads/plot_mahalanobis_distances.py" download=""><code class="xref download docutils literal"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_mahalanobis_distances.py</span></code></a></div>
<div class="sphx-glr-download docutils container">
<a class="reference download internal" href="../../_downloads/plot_mahalanobis_distances.ipynb" download=""><code class="xref download docutils literal"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">plot_mahalanobis_distances.ipynb</span></code></a></div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.github.io">Gallery generated by Sphinx-Gallery</a></p>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
<div class="footer">
© 2007 - 2018, scikit-learn developers (BSD License).
<a href="../../_sources/auto_examples/covariance/plot_mahalanobis_distances.rst.txt" rel="nofollow">Show this page source</a>
</div>
<div class="rel">
<div class="buttonPrevious">
<a href="plot_covariance_estimation.html">Previous
</a>
</div>
<div class="buttonNext">
<a href="plot_robust_vs_empirical_covariance.html">Next
</a>
</div>
</div>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script>
(function() {
var cx = '016639176250731907682:tjtqbvtvij0';
var gcse = document.createElement('script'); gcse.type = 'text/javascript'; gcse.async = true;
gcse.src = 'https://cse.google.com/cse.js?cx=' + cx;
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(gcse, s);
})();
</script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>