.. currentmodule:: sklearn
July, 2018
This release is exclusively in order to support Python 3.7.
n_iter_
may vary from previous releases in :class:`linear_model.LogisticRegression` withsolver='lbfgs'
and :class:`linear_model.HuberRegressor`. For Scipy <= 1.0.0, the optimizer could perform more than the requested maximum number of iterations. Now both estimators will report at mostmax_iter
iterations even if more were performed. :issue:`10723` by `Joel Nothman`_.
October 23, 2017
This is a bug-fix release with some minor documentation improvements and enhancements to features released in 0.19.0.
Note there may be minor differences in TSNE output in this release (due to :issue:`9623`), in the case where multiple samples have equal distance to some sample.
- Reverted the addition of
metrics.ndcg_score
andmetrics.dcg_score
which had been merged into version 0.19.0 by error. The implementations were broken and undocumented. return_train_score
which was added to :class:`model_selection.GridSearchCV`, :class:`model_selection.RandomizedSearchCV` and :func:`model_selection.cross_validate` in version 0.19.0 will be changing its default value from True to False in version 0.21. We found that calculating training score could have a great effect on cross validation runtime in some cases. Users should explicitly setreturn_train_score
to False if prediction or scoring functions are slow, resulting in a deleterious effect on CV runtime, or to True if they wish to use the calculated scores. :issue:`9677` by :user:`Kumar Ashutosh <thechargedneutron>` and `Joel Nothman`_.correlation_models
andregression_models
from the legacy gaussian processes implementation have been belatedly deprecated. :issue:`9717` by :user:`Kumar Ashutosh <thechargedneutron>`.
- Avoid integer overflows in :func:`metrics.matthews_corrcoef`. :issue:`9693` by :user:`Sam Steingold <sam-s>`.
- Fixed a bug in the objective function for :class:`manifold.TSNE` (both exact
and with the Barnes-Hut approximation) when
n_components >= 3
. :issue:`9711` by :user:`goncalo-rodrigues`. - Fix regression in :func:`model_selection.cross_val_predict` where it
raised an error with
method='predict_proba'
for some probabilistic classifiers. :issue:`9641` by :user:`James Bourbeau <jrbourbeau>`. - Fixed a bug where :func:`datasets.make_classification` modified its input
weights
. :issue:`9865` by :user:`Sachin Kelkar <s4chin>`. - :class:`model_selection.StratifiedShuffleSplit` now works with multioutput multiclass or multilabel data with more than 1000 columns. :issue:`9922` by :user:`Charlie Brummitt <crbrummitt>`.
- Fixed a bug with nested and conditional parameter setting, e.g. setting a pipeline step and its parameter at the same time. :issue:`9945` by `Andreas Müller`_ and `Joel Nothman`_.
Regressions in 0.19.0 fixed in 0.19.1:
- Fixed a bug where parallelised prediction in random forests was not thread-safe and could (rarely) result in arbitrary errors. :issue:`9830` by `Joel Nothman`_.
- Fix regression in :func:`model_selection.cross_val_predict` where it no
longer accepted
X
as a list. :issue:`9600` by :user:`Rasul Kerimov <CoderINusE>`. - Fixed handling of :func:`cross_val_predict` for binary classification with
method='decision_function'
. :issue:`9593` by :user:`Reiichiro Nakano <reiinakano>` and core devs. - Fix regression in :class:`pipeline.Pipeline` where it no longer accepted
steps
as a tuple. :issue:`9604` by :user:`Joris Van den Bossche <jorisvandenbossche>`. - Fix bug where
n_iter
was not properly deprecated, leavingn_iter
unavailable for interim use in :class:`linear_model.SGDClassifier`, :class:`linear_model.SGDRegressor`, :class:`linear_model.PassiveAggressiveClassifier`, :class:`linear_model.PassiveAggressiveRegressor` and :class:`linear_model.Perceptron`. :issue:`9558` by `Andreas Müller`_. - Dataset fetchers make sure temporary files are closed before removing them, which caused errors on Windows. :issue:`9847` by :user:`Joan Massich <massich>`.
- Fixed a regression in :class:`manifold.TSNE` where it no longer supported metrics other than 'euclidean' and 'precomputed'. :issue:`9623` by :user:`Oli Blum <oliblum90>`.
- Our test suite and :func:`utils.estimator_checks.check_estimators` can now be run without Nose installed. :issue:`9697` by :user:`Joan Massich <massich>`.
- To improve usability of version 0.19's :class:`pipeline.Pipeline`
caching,
memory
now allowsjoblib.Memory
instances. This make use of the new :func:`utils.validation.check_memory` helper. issue:9584 by :user:`Kumar Ashutosh <thechargedneutron>` - Some fixes to examples: :issue:`9750`, :issue:`9788`, :issue:`9815`
- Made a FutureWarning in SGD-based estimators less verbose. :issue:`9802` by :user:`Vrishank Bhardwaj <vrishank97>`.
With thanks to:
Joel Nothman, Loic Esteve, Andreas Mueller, Kumar Ashutosh, Vrishank Bhardwaj, Hanmin Qin, Rasul Kerimov, James Bourbeau, Nagarjuna Kumar, Nathaniel Saul, Olivier Grisel, Roman Yurchak, Reiichiro Nakano, Sachin Kelkar, Sam Steingold, Yaroslav Halchenko, diegodlh, felix, goncalo-rodrigues, jkleint, oliblum90, pasbi, Anthony Gitter, Ben Lawson, Charlie Brummitt, Didi Bar-Zev, Gael Varoquaux, Joan Massich, Joris Van den Bossche, nielsenmarkus11
August 12, 2017
We are excited to release a number of great new features including
:class:`neighbors.LocalOutlierFactor` for anomaly detection,
:class:`preprocessing.QuantileTransformer` for robust feature transformation,
and the :class:`multioutput.ClassifierChain` meta-estimator to simply account
for dependencies between classes in multilabel problems. We have some new
algorithms in existing estimators, such as multiplicative update in
:class:`decomposition.NMF` and multinomial
:class:`linear_model.LogisticRegression` with L1 loss (use solver='saga'
).
Cross validation is now able to return the results from multiple metric
evaluations. The new :func:`model_selection.cross_validate` can return many
scores on the test data as well as training set performance and timings, and we
have extended the scoring
and refit
parameters for grid/randomized
search :ref:`to handle multiple metrics <multimetric_grid_search>`.
You can also learn faster. For instance, the :ref:`new option to cache transformations <pipeline_cache>` in :class:`pipeline.Pipeline` makes grid search over pipelines including slow transformations much more efficient. And you can predict faster: if you're sure you know what you're doing, you can turn off validating that the input is finite using :func:`config_context`.
We've made some important fixes too. We've fixed a longstanding implementation error in :func:`metrics.average_precision_score`, so please be cautious with prior results reported from that function. A number of errors in the :class:`manifold.TSNE` implementation have been fixed, particularly in the default Barnes-Hut approximation. :class:`semi_supervised.LabelSpreading` and :class:`semi_supervised.LabelPropagation` have had substantial fixes. LabelPropagation was previously broken. LabelSpreading should now correctly respect its alpha parameter.
The following estimators and functions, when fit with the same data and parameters, may produce different models from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in random sampling procedures.
- :class:`cluster.KMeans` with sparse X and initial centroids given (bug fix)
- :class:`cross_decomposition.PLSRegression`
with
scale=True
(bug fix) - :class:`ensemble.GradientBoostingClassifier` and
:class:`ensemble.GradientBoostingRegressor` where
min_impurity_split
is used (bug fix) - gradient boosting
loss='quantile'
(bug fix) - :class:`ensemble.IsolationForest` (bug fix)
- :class:`feature_selection.SelectFdr` (bug fix)
- :class:`linear_model.RANSACRegressor` (bug fix)
- :class:`linear_model.LassoLars` (bug fix)
- :class:`linear_model.LassoLarsIC` (bug fix)
- :class:`manifold.TSNE` (bug fix)
- :class:`neighbors.NearestCentroid` (bug fix)
- :class:`semi_supervised.LabelSpreading` (bug fix)
- :class:`semi_supervised.LabelPropagation` (bug fix)
- tree based models where
min_weight_fraction_leaf
is used (enhancement) - :class:`model_selection.StratifiedKFold` with
shuffle=True
(this change, due to :issue:`7823` was not mentioned in the release notes at the time)
Details are listed in the changelog below.
(While we are trying to better inform users by providing this information, we cannot assure that this list is complete.)
Classifiers and regressors
- Added :class:`multioutput.ClassifierChain` for multi-label classification. By Adam Kleczewski.
- Added solver
'saga'
that implements the improved version of Stochastic Average Gradient, in :class:`linear_model.LogisticRegression` and :class:`linear_model.Ridge`. It allows the use of L1 penalty with multinomial logistic loss, and behaves marginally better than 'sag' during the first epochs of ridge and logistic regression. :issue:`8446` by `Arthur Mensch`_.
Other estimators
- Added the :class:`neighbors.LocalOutlierFactor` class for anomaly detection based on nearest neighbors. :issue:`5279` by `Nicolas Goix`_ and `Alexandre Gramfort`_.
- Added :class:`preprocessing.QuantileTransformer` class and :func:`preprocessing.quantile_transform` function for features normalization based on quantiles. :issue:`8363` by :user:`Denis Engemann <dengemann>`, :user:`Guillaume Lemaitre <glemaitre>`, `Olivier Grisel`_, `Raghav RV`_, :user:`Thierry Guillemot <tguillemot>`, and `Gael Varoquaux`_.
- The new solver
'mu'
implements a Multiplicate Update in :class:`decomposition.NMF`, allowing the optimization of all beta-divergences, including the Frobenius norm, the generalized Kullback-Leibler divergence and the Itakura-Saito divergence. :issue:`5295` by `Tom Dupre la Tour`_.
Model selection and evaluation
- :class:`model_selection.GridSearchCV` and :class:`model_selection.RandomizedSearchCV` now support simultaneous evaluation of multiple metrics. Refer to the :ref:`multimetric_grid_search` section of the user guide for more information. :issue:`7388` by `Raghav RV`_
- Added the :func:`model_selection.cross_validate` which allows evaluation of multiple metrics. This function returns a dict with more useful information from cross-validation such as the train scores, fit times and score times. Refer to :ref:`multimetric_cross_validation` section of the userguide for more information. :issue:`7388` by `Raghav RV`_
- Added :func:`metrics.mean_squared_log_error`, which computes the mean square error of the logarithmic transformation of targets, particularly useful for targets with an exponential trend. :issue:`7655` by :user:`Karan Desai <karandesai-96>`.
- Added :func:`metrics.dcg_score` and :func:`metrics.ndcg_score`, which compute Discounted cumulative gain (DCG) and Normalized discounted cumulative gain (NDCG). :issue:`7739` by :user:`David Gasquez <davidgasquez>`.
- Added the :class:`model_selection.RepeatedKFold` and :class:`model_selection.RepeatedStratifiedKFold`. :issue:`8120` by `Neeraj Gangwar`_.
Miscellaneous
- Validation that input data contains no NaN or inf can now be suppressed using :func:`config_context`, at your own risk. This will save on runtime, and may be particularly useful for prediction time. :issue:`7548` by `Joel Nothman`_.
- Added a test to ensure parameter listing in docstrings match the function/class signature. :issue:`9206` by `Alexandre Gramfort`_ and `Raghav RV`_.
Trees and ensembles
- The
min_weight_fraction_leaf
constraint in tree construction is now more efficient, taking a fast path to declare a node a leaf if its weight is less than 2 * the minimum. Note that the constructed tree will be different from previous versions wheremin_weight_fraction_leaf
is used. :issue:`7441` by :user:`Nelson Liu <nelson-liu>`. - :class:`ensemble.GradientBoostingClassifier` and :class:`ensemble.GradientBoostingRegressor` now support sparse input for prediction. :issue:`6101` by :user:`Ibraim Ganiev <olologin>`.
- :class:`ensemble.VotingClassifier` now allows changing estimators by using
:meth:`ensemble.VotingClassifier.set_params`. An estimator can also be
removed by setting it to
None
. :issue:`7674` by :user:`Yichuan Liu <yl565>`. - :func:`tree.export_graphviz` now shows configurable number of decimal places. :issue:`8698` by :user:`Guillaume Lemaitre <glemaitre>`.
- Added
flatten_transform
parameter to :class:`ensemble.VotingClassifier` to change output shape of transform method to 2 dimensional. :issue:`7794` by :user:`Ibraim Ganiev <olologin>` and :user:`Herilalaina Rakotoarison <herilalaina>`.
Linear, kernelized and related models
- :class:`linear_model.SGDClassifier`, :class:`linear_model.SGDRegressor`,
:class:`linear_model.PassiveAggressiveClassifier`,
:class:`linear_model.PassiveAggressiveRegressor` and
:class:`linear_model.Perceptron` now expose
max_iter
andtol
parameters, to handle convergence more precisely.n_iter
parameter is deprecated, and the fitted estimator exposes an_iter_
attribute, with actual number of iterations before convergence. :issue:`5036` by `Tom Dupre la Tour`_. - Added
average
parameter to perform weight averaging in :class:`linear_model.PassiveAggressiveClassifier`. :issue:`4939` by :user:`Andrea Esuli <aesuli>`. - :class:`linear_model.RANSACRegressor` no longer throws an error
when calling
fit
if no inliers are found in its first iteration. Furthermore, causes of skipped iterations are tracked in newly added attributes,n_skips_*
. :issue:`7914` by :user:`Michael Horrell <mthorrell>`. - In :class:`gaussian_process.GaussianProcessRegressor`, method
predict
is a lot faster withreturn_std=True
. :issue:`8591` by :user:`Hadrien Bertrand <hbertrand>`. - Added
return_std
topredict
method of :class:`linear_model.ARDRegression` and :class:`linear_model.BayesianRidge`. :issue:`7838` by :user:`Sergey Feldman <sergeyf>`. - Memory usage enhancements: Prevent cast from float32 to float64 in: :class:`linear_model.MultiTaskElasticNet`; :class:`linear_model.LogisticRegression` when using newton-cg solver; and :class:`linear_model.Ridge` when using svd, sparse_cg, cholesky or lsqr solvers. :issue:`8835`, :issue:`8061` by :user:`Joan Massich <massich>` and :user:`Nicolas Cordier <ncordier>` and :user:`Thierry Guillemot <tguillemot>`.
Other predictors
- Custom metrics for the :mod:`neighbors` binary trees now have fewer constraints: they must take two 1d-arrays and return a float. :issue:`6288` by `Jake Vanderplas`_.
algorithm='auto
in :mod:`neighbors` estimators now chooses the most appropriate algorithm for all input types and metrics. :issue:`9145` by :user:`Herilalaina Rakotoarison <herilalaina>` and :user:`Reddy Chinthala <preddy5>`.
Decomposition, manifold learning and clustering
- :class:`cluster.MiniBatchKMeans` and :class:`cluster.KMeans` now use significantly less memory when assigning data points to their nearest cluster center. :issue:`7721` by :user:`Jon Crall <Erotemic>`.
- :class:`decomposition.PCA`, :class:`decomposition.IncrementalPCA` and
:class:`decomposition.TruncatedSVD` now expose the singular values
from the underlying SVD. They are stored in the attribute
singular_values_
, like in :class:`decomposition.IncrementalPCA`. :issue:`7685` by :user:`Tommy Löfstedt <tomlof>` - :class:`decomposition.NMF` now faster when
beta_loss=0
. :issue:`9277` by :user:`hongkahjun`. - Memory improvements for method
barnes_hut
in :class:`manifold.TSNE` :issue:`7089` by :user:`Thomas Moreau <tomMoral>` and `Olivier Grisel`_. - Optimization schedule improvements for Barnes-Hut :class:`manifold.TSNE` so the results are closer to the one from the reference implementation lvdmaaten/bhtsne by :user:`Thomas Moreau <tomMoral>` and `Olivier Grisel`_.
- Memory usage enhancements: Prevent cast from float32 to float64 in :class:`decomposition.PCA` and :func:`decomposition.randomized_svd_low_rank`. :issue:`9067` by `Raghav RV`_.
Preprocessing and feature selection
- Added
norm_order
parameter to :class:`feature_selection.SelectFromModel` to enable selection of the norm order whencoef_
is more than 1D. :issue:`6181` by :user:`Antoine Wendlinger <antoinewdg>`. - Added ability to use sparse matrices in :func:`feature_selection.f_regression`
with
center=True
. :issue:`8065` by :user:`Daniel LeJeune <acadiansith>`. - Small performance improvement to n-gram creation in :mod:`feature_extraction.text` by binding methods for loops and special-casing unigrams. :issue:`7567` by :user:`Jaye Doepke <jtdoepke>`
- Relax assumption on the data for the
:class:`kernel_approximation.SkewedChi2Sampler`. Since the Skewed-Chi2
kernel is defined on the open interval (-skewedness; +\infty)^d,
the transform function should not check whether
X < 0
but whetherX < -self.skewedness
. :issue:`7573` by :user:`Romain Brault <RomainBrault>`. - Made default kernel parameters kernel-dependent in :class:`kernel_approximation.Nystroem`. :issue:`5229` by :user:`Saurabh Bansod <mth4saurabh>` and `Andreas Müller`_.
Model evaluation and meta-estimators
- :class:`pipeline.Pipeline` is now able to cache transformers
within a pipeline by using the
memory
constructor parameter. :issue:`7990` by :user:`Guillaume Lemaitre <glemaitre>`. - :class:`pipeline.Pipeline` steps can now be accessed as attributes of its
named_steps
attribute. :issue:`8586` by :user:`Herilalaina Rakotoarison <herilalaina>`. - Added
sample_weight
parameter to :meth:`pipeline.Pipeline.score`. :issue:`7723` by :user:`Mikhail Korobov <kmike>`. - Added ability to set
n_jobs
parameter to :func:`pipeline.make_union`. ATypeError
will be raised for any other kwargs. :issue:`8028` by :user:`Alexander Booth <alexandercbooth>`. - :class:`model_selection.GridSearchCV`, :class:`model_selection.RandomizedSearchCV` and :func:`model_selection.cross_val_score` now allow estimators with callable kernels which were previously prohibited. :issue:`8005` by `Andreas Müller`_ .
- :func:`model_selection.cross_val_predict` now returns output of the
correct shape for all values of the argument
method
. :issue:`7863` by :user:`Aman Dalmia <dalmia>`. - Added
shuffle
andrandom_state
parameters to shuffle training data before taking prefixes of it based on training sizes in :func:`model_selection.learning_curve`. :issue:`7506` by :user:`Narine Kokhlikyan <NarineK>`. - :class:`model_selection.StratifiedShuffleSplit` now works with multioutput multiclass (or multilabel) data. :issue:`9044` by `Vlad Niculae`_.
- Speed improvements to :class:`model_selection.StratifiedShuffleSplit`. :issue:`5991` by :user:`Arthur Mensch <arthurmensch>` and `Joel Nothman`_.
- Add
shuffle
parameter to :func:`model_selection.train_test_split`. :issue:`8845` by :user:`themrmax <themrmax>` - :class:`multioutput.MultiOutputRegressor` and :class:`multioutput.MultiOutputClassifier`
now support online learning using
partial_fit
. :issue: 8053 by :user:`Peng Yu <yupbank>`. - Add
max_train_size
parameter to :class:`model_selection.TimeSeriesSplit` :issue:`8282` by :user:`Aman Dalmia <dalmia>`. - More clustering metrics are now available through :func:`metrics.get_scorer`
and
scoring
parameters. :issue:`8117` by `Raghav RV`_. - A scorer based on :func:`metrics.explained_variance_score` is also available. :issue:`9259` by :user:`Hanmin Qin <qinhanmin2014>`.
Metrics
- :func:`metrics.matthews_corrcoef` now support multiclass classification. :issue:`8094` by :user:`Jon Crall <Erotemic>`.
- Add
sample_weight
parameter to :func:`metrics.cohen_kappa_score`. :issue:`8335` by :user:`Victor Poughon <vpoughon>`.
Miscellaneous
- :func:`utils.check_estimator` now attempts to ensure that methods transform, predict, etc. do not set attributes on the estimator. :issue:`7533` by :user:`Ekaterina Krivich <kiote>`.
- Added type checking to the
accept_sparse
parameter in :mod:`utils.validation` methods. This parameter now accepts only boolean, string, or list/tuple of strings.accept_sparse=None
is deprecated and should be replaced byaccept_sparse=False
. :issue:`7880` by :user:`Josh Karnofsky <jkarno>`. - Make it possible to load a chunk of an svmlight formatted file by passing a range of bytes to :func:`datasets.load_svmlight_file`. :issue:`935` by :user:`Olivier Grisel <ogrisel>`.
- :class:`dummy.DummyClassifier` and :class:`dummy.DummyRegressor` now accept non-finite features. :issue:`8931` by :user:`Attractadore`.
Trees and ensembles
- Fixed a memory leak in trees when using trees with
criterion='mae'
. :issue:`8002` by `Raghav RV`_. - Fixed a bug where :class:`ensemble.IsolationForest` uses an an incorrect formula for the average path length :issue:`8549` by Peter Wang.
- Fixed a bug where :class:`ensemble.AdaBoostClassifier` throws
ZeroDivisionError
while fitting data with single class labels. :issue:`7501` by :user:`Dominik Krzeminski <dokato>`. - Fixed a bug in :class:`ensemble.GradientBoostingClassifier` and
:class:`ensemble.GradientBoostingRegressor` where a float being compared
to
0.0
using==
caused a divide by zero error. :issue:`7970` by :user:`He Chen <chenhe95>`. - Fix a bug where :class:`ensemble.GradientBoostingClassifier` and
:class:`ensemble.GradientBoostingRegressor` ignored the
min_impurity_split
parameter. :issue:`8006` by :user:`Sebastian Pölsterl <sebp>`. - Fixed
oob_score
in :class:`ensemble.BaggingClassifier`. :issue:`8936` by :user:`Michael Lewis <mlewis1729>` - Fixed excessive memory usage in prediction for random forests estimators. :issue:`8672` by :user:`Mike Benfield <mikebenfield>`.
- Fixed a bug where
sample_weight
as a list broke random forests in Python 2 :issue:`8068` by :user:`xor`. - Fixed a bug where :class:`ensemble.IsolationForest` fails when
max_features
is less than 1. :issue:`5732` by :user:`Ishank Gulati <IshankGulati>`. - Fix a bug where gradient boosting with
loss='quantile'
computed negative errors for negative values ofytrue - ypred
leading to wrong values when calling__call__
. :issue:`8087` by :user:`Alexis Mignon <AlexisMignon>` - Fix a bug where :class:`ensemble.VotingClassifier` raises an error when a numpy array is passed in for weights. :issue:`7983` by :user:`Vincent Pham <vincentpham1991>`.
- Fixed a bug where :func:`tree.export_graphviz` raised an error when the length of features_names does not match n_features in the decision tree. :issue:`8512` by :user:`Li Li <aikinogard>`.
Linear, kernelized and related models
- Fixed a bug where :func:`linear_model.RANSACRegressor.fit` may run until
max_iter
if it finds a large inlier group early. :issue:`8251` by :user:`aivision2020`. - Fixed a bug where :class:`naive_bayes.MultinomialNB` and
:class:`naive_bayes.BernoulliNB` failed when
alpha=0
. :issue:`5814` by :user:`Yichuan Liu <yl565>` and :user:`Herilalaina Rakotoarison <herilalaina>`. - Fixed a bug where :class:`linear_model.LassoLars` does not give the same result as the LassoLars implementation available in R (lars library). :issue:`7849` by :user:`Jair Montoya Martinez <jmontoyam>`.
- Fixed a bug in :class:`linear_model.RandomizedLasso`,
:class:`linear_model.Lars`, :class:`linear_model.LassoLars`,
:class:`linear_model.LarsCV` and :class:`linear_model.LassoLarsCV`,
where the parameter
precompute
was not used consistently across classes, and some values proposed in the docstring could raise errors. :issue:`5359` by `Tom Dupre la Tour`_. - Fix inconsistent results between :class:`linear_model.RidgeCV` and
:class:`linear_model.Ridge` when using
normalize=True
. :issue:`9302` by `Alexandre Gramfort`_. - Fix a bug where :func:`linear_model.LassoLars.fit` sometimes
left
coef_
as a list, rather than an ndarray. :issue:`8160` by :user:`CJ Carey <perimosocordiae>`. - Fix :func:`linear_model.BayesianRidge.fit` to return
ridge parameter
alpha_
andlambda_
consistent with calculated coefficientscoef_
andintercept_
. :issue:`8224` by :user:`Peter Gedeck <gedeck>`. - Fixed a bug in :class:`svm.OneClassSVM` where it returned floats instead of integer classes. :issue:`8676` by :user:`Vathsala Achar <VathsalaAchar>`.
- Fix AIC/BIC criterion computation in :class:`linear_model.LassoLarsIC`. :issue:`9022` by `Alexandre Gramfort`_ and :user:`Mehmet Basbug <mehmetbasbug>`.
- Fixed a memory leak in our LibLinear implementation. :issue:`9024` by :user:`Sergei Lebedev <superbobry>`
- Fix bug where stratified CV splitters did not work with :class:`linear_model.LassoCV`. :issue:`8973` by :user:`Paulo Haddad <paulochf>`.
- Fixed a bug in :class:`gaussian_process.GaussianProcessRegressor` when the standard deviation and covariance predicted without fit would fail with a unmeaningful error by default. :issue:`6573` by :user:`Quazi Marufur Rahman <qmaruf>` and `Manoj Kumar`_.
Other predictors
- Fix :class:`semi_supervised.BaseLabelPropagation` to correctly implement
LabelPropagation
andLabelSpreading
as done in the referenced papers. :issue:`9239` by :user:`Andre Ambrosio Boechat <boechat107>`, :user:`Utkarsh Upadhyay <musically-ut>`, and `Joel Nothman`_.
Decomposition, manifold learning and clustering
- Fixed the implementation of :class:`manifold.TSNE`:
early_exageration
parameter had no effect and is now used for the first 250 optimization iterations.- Fixed the
AssertionError: Tree consistency failed
exception reported in :issue:`8992`. - Improve the learning schedule to match the one from the reference implementation lvdmaaten/bhtsne. by :user:`Thomas Moreau <tomMoral>` and `Olivier Grisel`_.
- Fix a bug in :class:`decomposition.LatentDirichletAllocation`
where the
perplexity
method was returning incorrect results because thetransform
method returns normalized document topic distributions as of version 0.18. :issue:`7954` by :user:`Gary Foreman <garyForeman>`. - Fix output shape and bugs with n_jobs > 1 in :class:`decomposition.SparseCoder` transform and :func:`decomposition.sparse_encode` for one-dimensional data and one component. This also impacts the output shape of :class:`decomposition.DictionaryLearning`. :issue:`8086` by `Andreas Müller`_.
- Fixed the implementation of
explained_variance_
in :class:`decomposition.PCA`, :class:`decomposition.RandomizedPCA` and :class:`decomposition.IncrementalPCA`. :issue:`9105` by Hanmin Qin. - Fixed the implementation of
noise_variance_
in :class:`decomposition.PCA`. :issue:`9108` by Hanmin Qin. - Fixed a bug where :class:`cluster.DBSCAN` gives incorrect result when input is a precomputed sparse matrix with initial rows all zero. :issue:`8306` by :user:`Akshay Gupta <Akshay0724>`
- Fix a bug regarding fitting :class:`cluster.KMeans` with a sparse array X and initial centroids, where X's means were unnecessarily being subtracted from the centroids. :issue:`7872` by :user:`Josh Karnofsky <jkarno>`.
- Fixes to the input validation in :class:`covariance.EllipticEnvelope`. :issue:`8086` by `Andreas Müller`_.
- Fixed a bug in :class:`covariance.MinCovDet` where inputting data
that produced a singular covariance matrix would cause the helper method
_c_step
to throw an exception. :issue:`3367` by :user:`Jeremy Steward <ThatGeoGuy>` - Fixed a bug in :class:`manifold.TSNE` affecting convergence of the gradient descent. :issue:`8768` by :user:`David DeTomaso <deto>`.
- Fixed a bug in :class:`manifold.TSNE` where it stored the incorrect
kl_divergence_
. :issue:`6507` by :user:`Sebastian Saeger <ssaeger>`. - Fixed improper scaling in :class:`cross_decomposition.PLSRegression`
with
scale=True
. :issue:`7819` by :user:`jayzed82 <jayzed82>`. - :class:`cluster.bicluster.SpectralCoclustering` and
:class:`cluster.bicluster.SpectralBiclustering`
fit
method conforms with API by acceptingy
and returning the object. :issue:`6126`, :issue:`7814` by :user:`Laurent Direr <ldirer>` and :user:`Maniteja Nandana <maniteja123>`. - Fix bug where :mod:`mixture`
sample
methods did not return as many samples as requested. :issue:`7702` by :user:`Levi John Wolf <ljwolf>`. - Fixed the shrinkage implementation in :class:`neighbors.NearestCentroid`. :issue:`9219` by Hanmin Qin.
Preprocessing and feature selection
- For sparse matrices, :func:`preprocessing.normalize` with
return_norm=True
will now raise aNotImplementedError
with 'l1' or 'l2' norm and with norm 'max' the norms returned will be the same as for dense matrices. :issue:`7771` by Ang Lu. - Fix a bug where :class:`feature_selection.SelectFdr` did not exactly implement Benjamini-Hochberg procedure. It formerly may have selected fewer features than it should. :issue:`7490` by :user:`Peng Meng <mpjlu>`.
- Fixed a bug where :class:`linear_model.RandomizedLasso` and :class:`linear_model.RandomizedLogisticRegression` breaks for sparse input. :issue:`8259` by :user:`Aman Dalmia <dalmia>`.
- Fix a bug where :class:`feature_extraction.FeatureHasher` mandatorily applied a sparse random projection to the hashed features, preventing the use of :class:`feature_extraction.text.HashingVectorizer` in a pipeline with :class:`feature_extraction.text.TfidfTransformer`. :issue:`7565` by :user:`Roman Yurchak <rth>`.
- Fix a bug where :class:`feature_selection.mutual_info_regression` did not
correctly use
n_neighbors
. :issue:`8181` by :user:`Guillaume Lemaitre <glemaitre>`.
Model evaluation and meta-estimators
- Fixed a bug where :func:`model_selection.BaseSearchCV.inverse_transform`
returns
self.best_estimator_.transform()
instead ofself.best_estimator_.inverse_transform()
. :issue:`8344` by :user:`Akshay Gupta <Akshay0724>` and :user:`Rasmus Eriksson <MrMjauh>`. - Added
classes_
attribute to :class:`model_selection.GridSearchCV`, :class:`model_selection.RandomizedSearchCV`, :class:`grid_search.GridSearchCV`, and :class:`grid_search.RandomizedSearchCV` that matches theclasses_
attribute ofbest_estimator_
. :issue:`7661` and :issue:`8295` by :user:`Alyssa Batula <abatula>`, :user:`Dylan Werner-Meier <unautre>`, and :user:`Stephen Hoover <stephen-hoover>`. - Fixed a bug where :func:`model_selection.validation_curve` reused the same estimator for each parameter value. :issue:`7365` by :user:`Aleksandr Sandrovskii <Sundrique>`.
- :func:`model_selection.permutation_test_score` now works with Pandas types. :issue:`5697` by :user:`Stijn Tonk <equialgo>`.
- Several fixes to input validation in :class:`multiclass.OutputCodeClassifier` :issue:`8086` by `Andreas Müller`_.
- :class:`multiclass.OneVsOneClassifier`'s
partial_fit
now ensures all classes are provided up-front. :issue:`6250` by :user:`Asish Panda <kaichogami>`. - Fix :func:`multioutput.MultiOutputClassifier.predict_proba` to return a
list of 2d arrays, rather than a 3d array. In the case where different
target columns had different numbers of classes, a
ValueError
would be raised on trying to stack matrices with different dimensions. :issue:`8093` by :user:`Peter Bull <pjbull>`. - Cross validation now works with Pandas datatypes that that have a read-only index. :issue:`9507` by `Loic Esteve`_.
Metrics
- :func:`metrics.average_precision_score` no longer linearly interpolates between operating points, and instead weighs precisions by the change in recall since the last operating point, as per the Wikipedia entry. (#7356). By :user:`Nick Dingwall <ndingwall>` and `Gael Varoquaux`_.
- Fix a bug in :func:`metrics.classification._check_targets`
which would return
'binary'
ify_true
andy_pred
were both'binary'
but the union ofy_true
andy_pred
was'multiclass'
. :issue:`8377` by `Loic Esteve`_. - Fixed an integer overflow bug in :func:`metrics.confusion_matrix` and hence :func:`metrics.cohen_kappa_score`. :issue:`8354`, :issue:`7929` by `Joel Nothman`_ and :user:`Jon Crall <Erotemic>`.
- Fixed passing of
gamma
parameter to thechi2
kernel in :func:`metrics.pairwise.pairwise_kernels` :issue:`5211` by :user:`Nick Rhinehart <nrhine1>`, :user:`Saurabh Bansod <mth4saurabh>` and `Andreas Müller`_.
Miscellaneous
- Fixed a bug when :func:`datasets.make_classification` fails when generating more than 30 features. :issue:`8159` by :user:`Herilalaina Rakotoarison <herilalaina>`.
- Fixed a bug where :func:`datasets.make_moons` gives an
incorrect result when
n_samples
is odd. :issue:`8198` by :user:`Josh Levy <levy5674>`. - Some
fetch_
functions in :mod:`datasets` were ignoring thedownload_if_missing
keyword. :issue:`7944` by :user:`Ralf Gommers <rgommers>`. - Fix estimators to accept a
sample_weight
parameter of typepandas.Series
in theirfit
function. :issue:`7825` by `Kathleen Chen`_. - Fix a bug in cases where
numpy.cumsum
may be numerically unstable, raising an exception if instability is identified. :issue:`7376` and :issue:`7331` by `Joel Nothman`_ and :user:`yangarbiter`. - Fix a bug where :meth:`base.BaseEstimator.__getstate__` obstructed pickling customizations of child-classes, when used in a multiple inheritance context. :issue:`8316` by :user:`Holger Peters <HolgerPeters>`.
- Update Sphinx-Gallery from 0.1.4 to 0.1.7 for resolving links in documentation build with Sphinx>1.5 :issue:`8010`, :issue:`7986` by :user:`Oscar Najera <Titan-C>`
- Add
data_home
parameter to :func:`sklearn.datasets.fetch_kddcup99`. :issue:`9289` by `Loic Esteve`_. - Fix dataset loaders using Python 3 version of makedirs to also work in Python 2. :issue:`9284` by :user:`Sebastin Santy <SebastinSanty>`.
- Several minor issues were fixed with thanks to the alerts of [lgtm.com](http://lgtm.com). :issue:`9278` by :user:`Jean Helie <jhelie>`, among others.
Trees and ensembles
- Gradient boosting base models are no longer estimators. By `Andreas Müller`_.
- All tree based estimators now accept a
min_impurity_decrease
parameter in lieu of themin_impurity_split
, which is now deprecated. Themin_impurity_decrease
helps stop splitting the nodes in which the weighted impurity decrease from splitting is no longer at leastmin_impurity_decrease
. :issue:`8449` by `Raghav RV`_.
Linear, kernelized and related models
n_iter
parameter is deprecated in :class:`linear_model.SGDClassifier`, :class:`linear_model.SGDRegressor`, :class:`linear_model.PassiveAggressiveClassifier`, :class:`linear_model.PassiveAggressiveRegressor` and :class:`linear_model.Perceptron`. By `Tom Dupre la Tour`_.
Other predictors
- :class:`neighbors.LSHForest` has been deprecated and will be removed in 0.21 due to poor performance. :issue:`9078` by :user:`Laurent Direr <ldirer>`.
- :class:`neighbors.NearestCentroid` no longer purports to support
metric='precomputed'
which now raises an error. :issue:`8515` by :user:`Sergul Aydore <sergulaydore>`. - The
alpha
parameter of :class:`semi_supervised.LabelPropagation` now has no effect and is deprecated to be removed in 0.21. :issue:`9239` by :user:`Andre Ambrosio Boechat <boechat107>`, :user:`Utkarsh Upadhyay <musically-ut>`, and `Joel Nothman`_.
Decomposition, manifold learning and clustering
- Deprecate the
doc_topic_distr
argument of theperplexity
method in :class:`decomposition.LatentDirichletAllocation` because the user no longer has access to the unnormalized document topic distribution needed for the perplexity calculation. :issue:`7954` by :user:`Gary Foreman <garyForeman>`. - The
n_topics
parameter of :class:`decomposition.LatentDirichletAllocation` has been renamed ton_components
and will be removed in version 0.21. :issue:`8922` by :user:`Attractadore`. - :meth:`decomposition.SparsePCA.transform`'s
ridge_alpha
parameter is deprecated in preference for class parameter. :issue:`8137` by :user:`Naoya Kanai <naoyak>`. - :class:`cluster.DBSCAN` now has a
metric_params
parameter. :issue:`8139` by :user:`Naoya Kanai <naoyak>`.
Preprocessing and feature selection
- :class:`feature_selection.SelectFromModel` now has a
partial_fit
method only if the underlying estimator does. By `Andreas Müller`_. - :class:`feature_selection.SelectFromModel` now validates the
threshold
parameter and sets thethreshold_
attribute during the call tofit
, and no longer during the call totransform`
. By `Andreas Müller`_. - The
non_negative
parameter in :class:`feature_extraction.FeatureHasher` has been deprecated, and replaced with a more principled alternative,alternate_sign
. :issue:`7565` by :user:`Roman Yurchak <rth>`. - :class:`linear_model.RandomizedLogisticRegression`, and :class:`linear_model.RandomizedLasso` have been deprecated and will be removed in version 0.21. :issue:`8995` by :user:`Ramana.S <sentient07>`.
Model evaluation and meta-estimators
- Deprecate the
fit_params
constructor input to the :class:`model_selection.GridSearchCV` and :class:`model_selection.RandomizedSearchCV` in favor of passing keyword parameters to thefit
methods of those classes. Data-dependent parameters needed for model training should be passed as keyword arguments tofit
, and conforming to this convention will allow the hyperparameter selection classes to be used with tools such as :func:`model_selection.cross_val_predict`. :issue:`2879` by :user:`Stephen Hoover <stephen-hoover>`. - In version 0.21, the default behavior of splitters that use the
test_size
andtrain_size
parameter will change, such that specifyingtrain_size
alone will causetest_size
to be the remainder. :issue:`7459` by :user:`Nelson Liu <nelson-liu>`. - :class:`multiclass.OneVsRestClassifier` now has
partial_fit
,decision_function
andpredict_proba
methods only when the underlying estimator does. :issue:`7812` by `Andreas Müller`_ and :user:`Mikhail Korobov <kmike>`. - :class:`multiclass.OneVsRestClassifier` now has a
partial_fit
method only if the underlying estimator does. By `Andreas Müller`_. - The
decision_function
output shape for binary classification in :class:`multiclass.OneVsRestClassifier` and :class:`multiclass.OneVsOneClassifier` is now(n_samples,)
to conform to scikit-learn conventions. :issue:`9100` by `Andreas Müller`_. - The :func:`multioutput.MultiOutputClassifier.predict_proba`
function used to return a 3d array (
n_samples
,n_classes
,n_outputs
). In the case where different target columns had different numbers of classes, aValueError
would be raised on trying to stack matrices with different dimensions. This function now returns a list of arrays where the length of the list isn_outputs
, and each array is (n_samples
,n_classes
) for that particular output. :issue:`8093` by :user:`Peter Bull <pjbull>`. - Replace attribute
named_steps
dict
to :class:`utils.Bunch` in :class:`pipeline.Pipeline` to enable tab completion in interactive environment. In the case conflict value onnamed_steps
anddict
attribute,dict
behavior will be prioritized. :issue:`8481` by :user:`Herilalaina Rakotoarison <herilalaina>`.
Miscellaneous
Deprecate the
y
parameter intransform
andinverse_transform
. The method should not accepty
parameter, as it's used at the prediction time. :issue:`8174` by :user:`Tahar Zanouda <tzano>`, `Alexandre Gramfort`_ and `Raghav RV`_.SciPy >= 0.13.3 and NumPy >= 1.8.2 are now the minimum supported versions for scikit-learn. The following backported functions in :mod:`utils` have been removed or deprecated accordingly. :issue:`8854` and :issue:`8874` by :user:`Naoya Kanai <naoyak>`
The
store_covariances
andcovariances_
parameters of :class:`discriminant_analysis.QuadraticDiscriminantAnalysis` has been renamed tostore_covariance
andcovariance_
to be consistent with the corresponding parameter names of the :class:`discriminant_analysis.LinearDiscriminantAnalysis`. They will be removed in version 0.21. :issue:`7998` by :user:`Jiacheng <mrbeann>`Removed in 0.19:
utils.fixes.argpartition
utils.fixes.array_equal
utils.fixes.astype
utils.fixes.bincount
utils.fixes.expit
utils.fixes.frombuffer_empty
utils.fixes.in1d
utils.fixes.norm
utils.fixes.rankdata
utils.fixes.safe_copy
Deprecated in 0.19, to be removed in 0.21:
utils.arpack.eigs
utils.arpack.eigsh
utils.arpack.svds
utils.extmath.fast_dot
utils.extmath.logsumexp
utils.extmath.norm
utils.extmath.pinvh
utils.graph.graph_laplacian
utils.random.choice
utils.sparsetools.connected_components
utils.stats.rankdata
Estimators with both methods
decision_function
andpredict_proba
are now required to have a monotonic relation between them. The methodcheck_decision_proba_consistency
has been added in utils.estimator_checks to check their consistency. :issue:`7578` by :user:`Shubham Bhardwaj <shubham0704>`All checks in
utils.estimator_checks
, in particular :func:`utils.estimator_checks.check_estimator` now accept estimator instances. Most other checks do not accept estimator classes any more. :issue:`9019` by `Andreas Müller`_.Ensure that estimators' attributes ending with
_
are not set in the constructor but only in thefit
method. Most notably, ensemble estimators (deriving from :class:`ensemble.BaseEnsemble`) now only haveself.estimators_
available afterfit
. :issue:`7464` by `Lars Buitinck`_ and `Loic Esteve`_.
Thanks to everyone who has contributed to the maintenance and improvement of the project since version 0.18, including:
Joel Nothman, Loic Esteve, Andreas Mueller, Guillaume Lemaitre, Olivier Grisel, Hanmin Qin, Raghav RV, Alexandre Gramfort, themrmax, Aman Dalmia, Gael Varoquaux, Naoya Kanai, Tom Dupré la Tour, Rishikesh, Nelson Liu, Taehoon Lee, Nelle Varoquaux, Aashil, Mikhail Korobov, Sebastin Santy, Joan Massich, Roman Yurchak, RAKOTOARISON Herilalaina, Thierry Guillemot, Alexandre Abadie, Carol Willing, Balakumaran Manoharan, Josh Karnofsky, Vlad Niculae, Utkarsh Upadhyay, Dmitry Petrov, Minghui Liu, Srivatsan, Vincent Pham, Albert Thomas, Jake VanderPlas, Attractadore, JC Liu, alexandercbooth, chkoar, Óscar Nájera, Aarshay Jain, Kyle Gilliam, Ramana Subramanyam, CJ Carey, Clement Joudet, David Robles, He Chen, Joris Van den Bossche, Karan Desai, Katie Luangkote, Leland McInnes, Maniteja Nandana, Michele Lacchia, Sergei Lebedev, Shubham Bhardwaj, akshay0724, omtcyfz, rickiepark, waterponey, Vathsala Achar, jbDelafosse, Ralf Gommers, Ekaterina Krivich, Vivek Kumar, Ishank Gulati, Dave Elliott, ldirer, Reiichiro Nakano, Levi John Wolf, Mathieu Blondel, Sid Kapur, Dougal J. Sutherland, midinas, mikebenfield, Sourav Singh, Aseem Bansal, Ibraim Ganiev, Stephen Hoover, AishwaryaRK, Steven C. Howell, Gary Foreman, Neeraj Gangwar, Tahar, Jon Crall, dokato, Kathy Chen, ferria, Thomas Moreau, Charlie Brummitt, Nicolas Goix, Adam Kleczewski, Sam Shleifer, Nikita Singh, Basil Beirouti, Giorgio Patrini, Manoj Kumar, Rafael Possas, James Bourbeau, James A. Bednar, Janine Harper, Jaye, Jean Helie, Jeremy Steward, Artsiom, John Wei, Jonathan LIgo, Jonathan Rahn, seanpwilliams, Arthur Mensch, Josh Levy, Julian Kuhlmann, Julien Aubert, Jörn Hees, Kai, shivamgargsya, Kat Hempstalk, Kaushik Lakshmikanth, Kennedy, Kenneth Lyons, Kenneth Myers, Kevin Yap, Kirill Bobyrev, Konstantin Podshumok, Arthur Imbert, Lee Murray, toastedcornflakes, Lera, Li Li, Arthur Douillard, Mainak Jas, tobycheese, Manraj Singh, Manvendra Singh, Marc Meketon, MarcoFalke, Matthew Brett, Matthias Gilch, Mehul Ahuja, Melanie Goetz, Meng, Peng, Michael Dezube, Michal Baumgartner, vibrantabhi19, Artem Golubin, Milen Paskov, Antonin Carette, Morikko, MrMjauh, NALEPA Emmanuel, Namiya, Antoine Wendlinger, Narine Kokhlikyan, NarineK, Nate Guerin, Angus Williams, Ang Lu, Nicole Vavrova, Nitish Pandey, Okhlopkov Daniil Olegovich, Andy Craze, Om Prakash, Parminder Singh, Patrick Carlson, Patrick Pei, Paul Ganssle, Paulo Haddad, Paweł Lorek, Peng Yu, Pete Bachant, Peter Bull, Peter Csizsek, Peter Wang, Pieter Arthur de Jong, Ping-Yao, Chang, Preston Parry, Puneet Mathur, Quentin Hibon, Andrew Smith, Andrew Jackson, 1kastner, Rameshwar Bhaskaran, Rebecca Bilbro, Remi Rampin, Andrea Esuli, Rob Hall, Robert Bradshaw, Romain Brault, Aman Pratik, Ruifeng Zheng, Russell Smith, Sachin Agarwal, Sailesh Choyal, Samson Tan, Samuël Weber, Sarah Brown, Sebastian Pölsterl, Sebastian Raschka, Sebastian Saeger, Alyssa Batula, Abhyuday Pratap Singh, Sergey Feldman, Sergul Aydore, Sharan Yalburgi, willduan, Siddharth Gupta, Sri Krishna, Almer, Stijn Tonk, Allen Riddell, Theofilos Papapanagiotou, Alison, Alexis Mignon, Tommy Boucher, Tommy Löfstedt, Toshihiro Kamishima, Tyler Folkman, Tyler Lanigan, Alexander Junge, Varun Shenoy, Victor Poughon, Vilhelm von Ehrenheim, Aleksandr Sandrovskii, Alan Yee, Vlasios Vasileiou, Warut Vijitbenjaronk, Yang Zhang, Yaroslav Halchenko, Yichuan Liu, Yuichi Fujikawa, affanv14, aivision2020, xor, andreh7, brady salz, campustrampus, Agamemnon Krasoulis, ditenberg, elena-sharova, filipj8, fukatani, gedeck, guiniol, guoci, hakaa1, hongkahjun, i-am-xhy, jakirkham, jaroslaw-weber, jayzed82, jeroko, jmontoyam, jonathan.striebel, josephsalmon, jschendel, leereeves, martin-hahn, mathurinm, mehak-sachdeva, mlewis1729, mlliou112, mthorrell, ndingwall, nuffe, yangarbiter, plagree, pldtc325, Breno Freitas, Brett Olsen, Brian A. Alfano, Brian Burns, polmauri, Brandon Carter, Charlton Austin, Chayant T15h, Chinmaya Pancholi, Christian Danielsen, Chung Yen, Chyi-Kwei Yau, pravarmahajan, DOHMATOB Elvis, Daniel LeJeune, Daniel Hnyk, Darius Morawiec, David DeTomaso, David Gasquez, David Haberthür, David Heryanto, David Kirkby, David Nicholson, rashchedrin, Deborah Gertrude Digges, Denis Engemann, Devansh D, Dickson, Bob Baxley, Don86, E. Lynch-Klarup, Ed Rogers, Elizabeth Ferriss, Ellen-Co2, Fabian Egli, Fang-Chieh Chou, Bing Tian Dai, Greg Stupp, Grzegorz Szpak, Bertrand Thirion, Hadrien Bertrand, Harizo Rajaona, zxcvbnius, Henry Lin, Holger Peters, Icyblade Dai, Igor Andriushchenko, Ilya, Isaac Laughlin, Iván Vallés, Aurélien Bellet, JPFrancoia, Jacob Schreiber, Asish Mahapatra