-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathsklearn.cluster.AffinityPropagation.html
452 lines (405 loc) · 22.7 KB
/
sklearn.cluster.AffinityPropagation.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>sklearn.cluster.AffinityPropagation — scikit-learn 0.17.1 documentation</title>
<!-- htmltitle is before nature.css - we use this hack to load bootstrap first -->
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="stylesheet" href="../../_static/css/bootstrap.min.css" media="screen" />
<link rel="stylesheet" href="../../_static/css/bootstrap-responsive.css"/>
<link rel="stylesheet" href="../../_static/nature.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '0.17.1',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/js/copybutton.js"></script>
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../../about.html" />
<link rel="top" title="scikit-learn 0.17.1 documentation" href="../../index.html" />
<link rel="up" title="API Reference" href="../classes.html" />
<link rel="next" title="sklearn.cluster.AgglomerativeClustering" href="sklearn.cluster.AgglomerativeClustering.html" />
<link rel="prev" title="sklearn.base.clone" href="sklearn.base.clone.html" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<script src="../../_static/js/bootstrap.min.js" type="text/javascript"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html" />
<script type="text/javascript">
$("div.buttonNext, div.buttonPrevious").hover(
function () {
$(this).css('background-color', '#FF9C34');
},
function () {
$(this).css('background-color', '#A7D6E2');
}
);
</script>
</head>
<body role="document">
<div class="header-wrapper">
<div class="header">
<p class="logo"><a href="../../index.html">
<img src="../../_static/scikit-learn-logo-small.png" alt="Logo"/>
</a>
</p><div class="navbar">
<ul>
<li><a href="../../index.html">Home</a></li>
<li><a href="../../install.html">Installation</a></li>
<li class="btn-li"><div class="btn-group">
<a href="../../documentation.html">Documentation</a>
<a class="btn dropdown-toggle" data-toggle="dropdown">
<span class="caret"></span>
</a>
<ul class="dropdown-menu">
<li class="link-title">Scikit-learn 0.17 (stable)</li>
<li><a href="../../tutorial/index.html">Tutorials</a></li>
<li><a href="../../user_guide.html">User guide</a></li>
<li><a href="../classes.html">API</a></li>
<li><a href="../../faq.html">FAQ</a></li>
<li><a href="../../developers/contributing.html">Contributing</a></li>
<li class="divider"></li>
<li><a href="http://scikit-learn.org/dev/documentation.html">Scikit-learn 0.18 (development)</a></li>
<li><a href="http://scikit-learn.org/0.16/documentation.html">Scikit-learn 0.16</a></li>
<li><a href="../../_downloads/scikit-learn-docs.pdf">PDF documentation</a></li>
</ul>
</div>
</li>
<li><a href="../../auto_examples/index.html">Examples</a></li>
</ul>
<div class="search_form">
<div id="cse" style="width: 100%;"></div>
</div>
</div> <!-- end navbar --></div>
</div>
<!-- Github "fork me" ribbon -->
<a href="https://github.com/scikit-learn/scikit-learn">
<img class="fork-me"
style="position: absolute; top: 0; right: 0; border: 0;"
src="../../_static/img/forkme.png"
alt="Fork me on GitHub" />
</a>
<div class="content-wrapper">
<div class="sphinxsidebar">
<div class="sphinxsidebarwrapper">
<div class="rel">
<!-- rellinks[1:] is an ugly hack to avoid link to module
index -->
<div class="rellink">
<a href="sklearn.base.clone.html"
accesskey="P">Previous
<br/>
<span class="smallrellink">
sklearn.base....
</span>
<span class="hiddenrellink">
sklearn.base.clone
</span>
</a>
</div>
<!-- Ad a link to the 'up' page -->
<div class="spacer">
</div>
<div class="rellink">
<a href="../classes.html">
Up
<br/>
<span class="smallrellink">
API Reference
</span>
<span class="hiddenrellink">
API Reference
</span>
</a>
</div>
</div>
<p class="doc-version">This documentation is for scikit-learn <strong>version 0.17.1</strong> — <a href="http://scikit-learn.org/stable/support.html#documentation-resources">Other versions</a></p>
<p class="citing">If you use the software, please consider <a href="../../about.html#citing-scikit-learn">citing scikit-learn</a>.</p>
<ul>
<li><a class="reference internal" href="#"><code class="docutils literal"><span class="pre">sklearn.cluster</span></code>.AffinityPropagation</a><ul>
<li><a class="reference internal" href="#examples-using-sklearn-cluster-affinitypropagation">Examples using <code class="docutils literal"><span class="pre">sklearn.cluster.AffinityPropagation</span></code></a></li>
</ul>
</li>
</ul>
</div>
</div>
<input type="checkbox" id="nav-trigger" class="nav-trigger" checked />
<label for="nav-trigger"></label>
<div class="content">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="sklearn-cluster-affinitypropagation">
<h1><a class="reference internal" href="../classes.html#module-sklearn.cluster" title="sklearn.cluster"><code class="xref py py-mod docutils literal"><span class="pre">sklearn.cluster</span></code></a>.AffinityPropagation<a class="headerlink" href="#sklearn-cluster-affinitypropagation" title="Permalink to this headline">¶</a></h1>
<dl class="class">
<dt id="sklearn.cluster.AffinityPropagation">
<em class="property">class </em><code class="descclassname">sklearn.cluster.</code><code class="descname">AffinityPropagation</code><span class="sig-paren">(</span><em>damping=0.5</em>, <em>max_iter=200</em>, <em>convergence_iter=15</em>, <em>copy=True</em>, <em>preference=None</em>, <em>affinity='euclidean'</em>, <em>verbose=False</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/51a765a/sklearn/cluster/affinity_propagation_.py#L193"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AffinityPropagation" title="Permalink to this definition">¶</a></dt>
<dd><p>Perform Affinity Propagation Clustering of data.</p>
<p>Read more in the <a class="reference internal" href="../clustering.html#affinity-propagation"><span>User Guide</span></a>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><p class="first"><strong>damping</strong> : float, optional, default: 0.5</p>
<blockquote>
<div><p>Damping factor between 0.5 and 1.</p>
</div></blockquote>
<p><strong>convergence_iter</strong> : int, optional, default: 15</p>
<blockquote>
<div><p>Number of iterations with no change in the number
of estimated clusters that stops the convergence.</p>
</div></blockquote>
<p><strong>max_iter</strong> : int, optional, default: 200</p>
<blockquote>
<div><p>Maximum number of iterations.</p>
</div></blockquote>
<p><strong>copy</strong> : boolean, optional, default: True</p>
<blockquote>
<div><p>Make a copy of input data.</p>
</div></blockquote>
<p><strong>preference</strong> : array-like, shape (n_samples,) or float, optional</p>
<blockquote>
<div><p>Preferences for each point - points with larger values of
preferences are more likely to be chosen as exemplars. The number
of exemplars, ie of clusters, is influenced by the input
preferences value. If the preferences are not passed as arguments,
they will be set to the median of the input similarities.</p>
</div></blockquote>
<p><strong>affinity</strong> : string, optional, default=``euclidean``</p>
<blockquote>
<div><p>Which affinity to use. At the moment <code class="docutils literal"><span class="pre">precomputed</span></code> and
<code class="docutils literal"><span class="pre">euclidean</span></code> are supported. <code class="docutils literal"><span class="pre">euclidean</span></code> uses the
negative squared euclidean distance between points.</p>
</div></blockquote>
<p><strong>verbose</strong> : boolean, optional, default: False</p>
<blockquote>
<div><p>Whether to be verbose.</p>
</div></blockquote>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Attributes:</th><td class="field-body"><p class="first"><strong>cluster_centers_indices_</strong> : array, shape (n_clusters,)</p>
<blockquote>
<div><p>Indices of cluster centers</p>
</div></blockquote>
<p><strong>cluster_centers_</strong> : array, shape (n_clusters, n_features)</p>
<blockquote>
<div><p>Cluster centers (if affinity != <code class="docutils literal"><span class="pre">precomputed</span></code>).</p>
</div></blockquote>
<p><strong>labels_</strong> : array, shape (n_samples,)</p>
<blockquote>
<div><p>Labels of each point</p>
</div></blockquote>
<p><strong>affinity_matrix_</strong> : array, shape (n_samples, n_samples)</p>
<blockquote>
<div><p>Stores the affinity matrix used in <code class="docutils literal"><span class="pre">fit</span></code>.</p>
</div></blockquote>
<p><strong>n_iter_</strong> : int</p>
<blockquote class="last">
<div><p>Number of iterations taken to converge.</p>
</div></blockquote>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Notes</p>
<p>See examples/cluster/plot_affinity_propagation.py for an example.</p>
<p>The algorithmic complexity of affinity propagation is quadratic
in the number of points.</p>
<p class="rubric">References</p>
<p>Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages
Between Data Points”, Science Feb. 2007</p>
<p class="rubric">Methods</p>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%" />
<col width="90%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="#sklearn.cluster.AffinityPropagation.fit" title="sklearn.cluster.AffinityPropagation.fit"><code class="xref py py-obj docutils literal"><span class="pre">fit</span></code></a>(X[, y])</td>
<td>Create affinity matrix from negative euclidean distances, then apply affinity propagation clustering.</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="#sklearn.cluster.AffinityPropagation.fit_predict" title="sklearn.cluster.AffinityPropagation.fit_predict"><code class="xref py py-obj docutils literal"><span class="pre">fit_predict</span></code></a>(X[, y])</td>
<td>Performs clustering on X and returns cluster labels.</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="#sklearn.cluster.AffinityPropagation.get_params" title="sklearn.cluster.AffinityPropagation.get_params"><code class="xref py py-obj docutils literal"><span class="pre">get_params</span></code></a>([deep])</td>
<td>Get parameters for this estimator.</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="#sklearn.cluster.AffinityPropagation.predict" title="sklearn.cluster.AffinityPropagation.predict"><code class="xref py py-obj docutils literal"><span class="pre">predict</span></code></a>(X)</td>
<td>Predict the closest cluster each sample in X belongs to.</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="#sklearn.cluster.AffinityPropagation.set_params" title="sklearn.cluster.AffinityPropagation.set_params"><code class="xref py py-obj docutils literal"><span class="pre">set_params</span></code></a>(**params)</td>
<td>Set the parameters of this estimator.</td>
</tr>
</tbody>
</table>
<dl class="method">
<dt id="sklearn.cluster.AffinityPropagation.__init__">
<code class="descname">__init__</code><span class="sig-paren">(</span><em>damping=0.5</em>, <em>max_iter=200</em>, <em>convergence_iter=15</em>, <em>copy=True</em>, <em>preference=None</em>, <em>affinity='euclidean'</em>, <em>verbose=False</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/51a765a/sklearn/cluster/affinity_propagation_.py#L260"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AffinityPropagation.__init__" title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="sklearn.cluster.AffinityPropagation.fit">
<code class="descname">fit</code><span class="sig-paren">(</span><em>X</em>, <em>y=None</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/51a765a/sklearn/cluster/affinity_propagation_.py#L276"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AffinityPropagation.fit" title="Permalink to this definition">¶</a></dt>
<dd><p>Create affinity matrix from negative euclidean distances, then
apply affinity propagation clustering.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><p class="first"><strong>X: array-like, shape (n_samples, n_features) or (n_samples, n_samples)</strong> :</p>
<blockquote class="last">
<div><p>Data matrix or, if affinity is <code class="docutils literal"><span class="pre">precomputed</span></code>, matrix of
similarities / affinities.</p>
</div></blockquote>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="sklearn.cluster.AffinityPropagation.fit_predict">
<code class="descname">fit_predict</code><span class="sig-paren">(</span><em>X</em>, <em>y=None</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/51a765a/sklearn/base.py#L356"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AffinityPropagation.fit_predict" title="Permalink to this definition">¶</a></dt>
<dd><p>Performs clustering on X and returns cluster labels.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><p class="first"><strong>X</strong> : ndarray, shape (n_samples, n_features)</p>
<blockquote>
<div><p>Input data.</p>
</div></blockquote>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>y</strong> : ndarray, shape (n_samples,)</p>
<blockquote class="last">
<div><p>cluster labels</p>
</div></blockquote>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="sklearn.cluster.AffinityPropagation.get_params">
<code class="descname">get_params</code><span class="sig-paren">(</span><em>deep=True</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/51a765a/sklearn/base.py#L199"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AffinityPropagation.get_params" title="Permalink to this definition">¶</a></dt>
<dd><p>Get parameters for this estimator.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><p class="first"><strong>deep: boolean, optional</strong> :</p>
<blockquote>
<div><p>If True, will return the parameters for this estimator and
contained subobjects that are estimators.</p>
</div></blockquote>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>params</strong> : mapping of string to any</p>
<blockquote class="last">
<div><p>Parameter names mapped to their values.</p>
</div></blockquote>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="sklearn.cluster.AffinityPropagation.predict">
<code class="descname">predict</code><span class="sig-paren">(</span><em>X</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/51a765a/sklearn/cluster/affinity_propagation_.py#L308"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AffinityPropagation.predict" title="Permalink to this definition">¶</a></dt>
<dd><p>Predict the closest cluster each sample in X belongs to.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><p class="first"><strong>X</strong> : {array-like, sparse matrix}, shape (n_samples, n_features)</p>
<blockquote>
<div><p>New data to predict.</p>
</div></blockquote>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><strong>labels</strong> : array, shape (n_samples,)</p>
<blockquote class="last">
<div><p>Index of the cluster each sample belongs to.</p>
</div></blockquote>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="sklearn.cluster.AffinityPropagation.set_params">
<code class="descname">set_params</code><span class="sig-paren">(</span><em>**params</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/51a765a/sklearn/base.py#L236"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AffinityPropagation.set_params" title="Permalink to this definition">¶</a></dt>
<dd><p>Set the parameters of this estimator.</p>
<p>The method works on simple estimators as well as on nested objects
(such as pipelines). The former have parameters of the form
<code class="docutils literal"><span class="pre"><component>__<parameter></span></code> so that it’s possible to update each
component of a nested object.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body"><strong>self</strong> :</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
<div class="section" id="examples-using-sklearn-cluster-affinitypropagation">
<h2>Examples using <code class="docutils literal"><span class="pre">sklearn.cluster.AffinityPropagation</span></code><a class="headerlink" href="#examples-using-sklearn-cluster-affinitypropagation" title="Permalink to this headline">¶</a></h2>
<div class="thumbnailContainer" tooltip="Reference: Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Poin..."><div class="figure" id="id1">
<a class="reference external image-reference" href="./../../auto_examples/cluster/plot_affinity_propagation.html"><img alt="../../_images/plot_affinity_propagation1.png" src="../../_images/plot_affinity_propagation1.png" /></a>
<p class="caption"><span class="caption-text"><a class="reference internal" href="../../auto_examples/cluster/plot_affinity_propagation.html#example-cluster-plot-affinity-propagation-py"><span>Demo of affinity propagation clustering algorithm</span></a></span></p>
</div>
</div><div class="thumbnailContainer" tooltip="This example aims at showing characteristics of different clustering algorithms on datasets tha..."><div class="figure" id="id2">
<a class="reference external image-reference" href="./../../auto_examples/cluster/plot_cluster_comparison.html"><img alt="../../_images/plot_cluster_comparison1.png" src="../../_images/plot_cluster_comparison1.png" /></a>
<p class="caption"><span class="caption-text"><a class="reference internal" href="../../auto_examples/cluster/plot_cluster_comparison.html#example-cluster-plot-cluster-comparison-py"><span>Comparing different clustering algorithms on toy datasets</span></a></span></p>
</div>
</div><div class="clearer"></div></div>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
<div class="footer">
© 2010 - 2014, scikit-learn developers (BSD License).
<a href="../../_sources/modules/generated/sklearn.cluster.AffinityPropagation.txt" rel="nofollow">Show this page source</a>
</div>
<div class="rel">
<div class="buttonPrevious">
<a href="sklearn.base.clone.html">Previous
</a>
</div>
</div>
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-22606712-2']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<script src="http://www.google.com/jsapi" type="text/javascript"></script>
<script type="text/javascript"> google.load('search', '1',
{language : 'en'}); google.setOnLoadCallback(function() {
var customSearchControl = new
google.search.CustomSearchControl('016639176250731907682:tjtqbvtvij0');
customSearchControl.setResultSetSize(google.search.Search.FILTERED_CSE_RESULTSET);
var options = new google.search.DrawOptions();
options.setAutoComplete(true);
customSearchControl.draw('cse', options); }, true);
</script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>