-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathplot_partial_dependence.html
340 lines (286 loc) · 24.4 KB
/
plot_partial_dependence.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Partial Dependence Plots — scikit-learn 0.17.1 documentation</title>
<!-- htmltitle is before nature.css - we use this hack to load bootstrap first -->
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="stylesheet" href="../../_static/css/bootstrap.min.css" media="screen" />
<link rel="stylesheet" href="../../_static/css/bootstrap-responsive.css"/>
<link rel="stylesheet" href="../../_static/nature.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '0.17.1',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/js/copybutton.js"></script>
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../../about.html" />
<link rel="top" title="scikit-learn 0.17.1 documentation" href="../../index.html" />
<link rel="up" title="Examples" href="../index.html" />
<link rel="next" title="Hashing feature transformation using Totally Random Trees" href="plot_random_forest_embedding.html" />
<link rel="prev" title="Prediction Intervals for Gradient Boosting Regression" href="plot_gradient_boosting_quantile.html" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<script src="../../_static/js/bootstrap.min.js" type="text/javascript"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/auto_examples/ensemble/plot_partial_dependence.html" />
<script type="text/javascript">
$("div.buttonNext, div.buttonPrevious").hover(
function () {
$(this).css('background-color', '#FF9C34');
},
function () {
$(this).css('background-color', '#A7D6E2');
}
);
</script>
</head>
<body role="document">
<div class="header-wrapper">
<div class="header">
<p class="logo"><a href="../../index.html">
<img src="../../_static/scikit-learn-logo-small.png" alt="Logo"/>
</a>
</p><div class="navbar">
<ul>
<li><a href="../../index.html">Home</a></li>
<li><a href="../../install.html">Installation</a></li>
<li class="btn-li"><div class="btn-group">
<a href="../../documentation.html">Documentation</a>
<a class="btn dropdown-toggle" data-toggle="dropdown">
<span class="caret"></span>
</a>
<ul class="dropdown-menu">
<li class="link-title">Scikit-learn 0.17 (stable)</li>
<li><a href="../../tutorial/index.html">Tutorials</a></li>
<li><a href="../../user_guide.html">User guide</a></li>
<li><a href="../../modules/classes.html">API</a></li>
<li><a href="../../faq.html">FAQ</a></li>
<li><a href="../../developers/contributing.html">Contributing</a></li>
<li class="divider"></li>
<li><a href="http://scikit-learn.org/dev/documentation.html">Scikit-learn 0.18 (development)</a></li>
<li><a href="http://scikit-learn.org/0.16/documentation.html">Scikit-learn 0.16</a></li>
<li><a href="../../_downloads/scikit-learn-docs.pdf">PDF documentation</a></li>
</ul>
</div>
</li>
<li><a href="../index.html">Examples</a></li>
</ul>
<div class="search_form">
<div id="cse" style="width: 100%;"></div>
</div>
</div> <!-- end navbar --></div>
</div>
<!-- Github "fork me" ribbon -->
<a href="https://github.com/scikit-learn/scikit-learn">
<img class="fork-me"
style="position: absolute; top: 0; right: 0; border: 0;"
src="../../_static/img/forkme.png"
alt="Fork me on GitHub" />
</a>
<div class="content-wrapper">
<div class="sphinxsidebar">
<div class="sphinxsidebarwrapper">
<div class="rel">
<!-- rellinks[1:] is an ugly hack to avoid link to module
index -->
<div class="rellink">
<a href="plot_gradient_boosting_quantile.html"
accesskey="P">Previous
<br/>
<span class="smallrellink">
Prediction In...
</span>
<span class="hiddenrellink">
Prediction Intervals for Gradient Boosting Regression
</span>
</a>
</div>
<!-- Ad a link to the 'up' page -->
<div class="spacer">
</div>
<div class="rellink">
<a href="../index.html">
Up
<br/>
<span class="smallrellink">
Examples
</span>
<span class="hiddenrellink">
Examples
</span>
</a>
</div>
</div>
<p class="doc-version">This documentation is for scikit-learn <strong>version 0.17.1</strong> — <a href="http://scikit-learn.org/stable/support.html#documentation-resources">Other versions</a></p>
<p class="citing">If you use the software, please consider <a href="../../about.html#citing-scikit-learn">citing scikit-learn</a>.</p>
<ul>
<li><a class="reference internal" href="#">Partial Dependence Plots</a></li>
</ul>
</div>
</div>
<input type="checkbox" id="nav-trigger" class="nav-trigger" checked />
<label for="nav-trigger"></label>
<div class="content">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="partial-dependence-plots">
<span id="example-ensemble-plot-partial-dependence-py"></span><h1>Partial Dependence Plots<a class="headerlink" href="#partial-dependence-plots" title="Permalink to this headline">¶</a></h1>
<p>Partial dependence plots show the dependence between the target function <a class="footnote-reference" href="#id4" id="id1">[2]</a>
and a set of ‘target’ features, marginalizing over the
values of all other features (the complement features). Due to the limits
of human perception the size of the target feature set must be small (usually,
one or two) thus the target features are usually chosen among the most
important features
(see <a class="reference internal" href="../../modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor.feature_importances_" title="sklearn.ensemble.GradientBoostingRegressor.feature_importances_"><code class="xref py py-attr docutils literal"><span class="pre">feature_importances_</span></code></a>).</p>
<p>This example shows how to obtain partial dependence plots from a
<a class="reference internal" href="../../modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor" title="sklearn.ensemble.GradientBoostingRegressor"><code class="xref py py-class docutils literal"><span class="pre">GradientBoostingRegressor</span></code></a> trained on the California
housing dataset. The example is taken from <a class="footnote-reference" href="#id3" id="id2">[1]</a>.</p>
<p>The plot shows four one-way and one two-way partial dependence plots.
The target variables for the one-way PDP are:
median income (<cite>MedInc</cite>), avg. occupants per household (<cite>AvgOccup</cite>),
median house age (<cite>HouseAge</cite>), and avg. rooms per household (<cite>AveRooms</cite>).</p>
<p>We can clearly see that the median house price shows a linear relationship
with the median income (top left) and that the house price drops when the
avg. occupants per household increases (top middle).
The top right plot shows that the house age in a district does not have
a strong influence on the (median) house price; so does the average rooms
per household.
The tick marks on the x-axis represent the deciles of the feature values
in the training data.</p>
<p>Partial dependence plots with two target features enable us to visualize
interactions among them. The two-way partial dependence plot shows the
dependence of median house price on joint values of house age and avg.
occupants per household. We can clearly see an interaction between the
two features:
For an avg. occupancy greater than two, the house price is nearly independent
of the house age, whereas for values less than two there is a strong dependence
on age.</p>
<table class="docutils footnote" frame="void" id="id3" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id2">[1]</a></td><td>T. Hastie, R. Tibshirani and J. Friedman,
“Elements of Statistical Learning Ed. 2”, Springer, 2009.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="id4" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id1">[2]</a></td><td>For classification you can think of it as the regression score before
the link function.</td></tr>
</tbody>
</table>
<p class="horizontal"><strong>Python source code:</strong> <a class="reference download internal" href="../../_downloads/plot_partial_dependence.py"><code class="xref download docutils literal"><span class="pre">plot_partial_dependence.py</span></code></a></p>
<div class="highlight-python"><div class="highlight"><pre><span class="k">print</span><span class="p">(</span><span class="n">__doc__</span><span class="p">)</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">mpl_toolkits.mplot3d</span> <span class="kn">import</span> <span class="n">Axes3D</span>
<span class="kn">from</span> <span class="nn">sklearn.cross_validation</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.cross_validation.train_test_split.html#sklearn.cross_validation.train_test_split"><span class="n">train_test_split</span></a>
<span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor"><span class="n">GradientBoostingRegressor</span></a>
<span class="kn">from</span> <span class="nn">sklearn.ensemble.partial_dependence</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.ensemble.partial_dependence.plot_partial_dependence.html#sklearn.ensemble.partial_dependence.plot_partial_dependence"><span class="n">plot_partial_dependence</span></a>
<span class="kn">from</span> <span class="nn">sklearn.ensemble.partial_dependence</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.ensemble.partial_dependence.plot_partial_dependence.html#sklearn.ensemble.partial_dependence"><span class="n">partial_dependence</span></a>
<span class="kn">from</span> <span class="nn">sklearn.datasets.california_housing</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.datasets.fetch_california_housing.html#sklearn.datasets.fetch_california_housing"><span class="n">fetch_california_housing</span></a>
<span class="k">def</span> <span class="nf">main</span><span class="p">():</span>
<span class="n">cal_housing</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.datasets.fetch_california_housing.html#sklearn.datasets.fetch_california_housing"><span class="n">fetch_california_housing</span></a><span class="p">()</span>
<span class="c1"># split 80/20 train-test</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.cross_validation.train_test_split.html#sklearn.cross_validation.train_test_split"><span class="n">train_test_split</span></a><span class="p">(</span><span class="n">cal_housing</span><span class="o">.</span><span class="n">data</span><span class="p">,</span>
<span class="n">cal_housing</span><span class="o">.</span><span class="n">target</span><span class="p">,</span>
<span class="n">test_size</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span>
<span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">names</span> <span class="o">=</span> <span class="n">cal_housing</span><span class="o">.</span><span class="n">feature_names</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'_'</span> <span class="o">*</span> <span class="mi">80</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s2">"Training GBRT..."</span><span class="p">)</span>
<span class="n">clf</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor"><span class="n">GradientBoostingRegressor</span></a><span class="p">(</span><span class="n">n_estimators</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">max_depth</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span>
<span class="n">learning_rate</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">'huber'</span><span class="p">,</span>
<span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s2">"done."</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'_'</span> <span class="o">*</span> <span class="mi">80</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'Convenience plot with ``partial_dependence_plots``'</span><span class="p">)</span>
<span class="k">print</span>
<span class="n">features</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">)]</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">axs</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.ensemble.partial_dependence.plot_partial_dependence.html#sklearn.ensemble.partial_dependence.plot_partial_dependence"><span class="n">plot_partial_dependence</span></a><span class="p">(</span><span class="n">clf</span><span class="p">,</span> <span class="n">X_train</span><span class="p">,</span> <span class="n">features</span><span class="p">,</span>
<span class="n">feature_names</span><span class="o">=</span><span class="n">names</span><span class="p">,</span>
<span class="n">n_jobs</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">grid_resolution</span><span class="o">=</span><span class="mi">50</span><span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">suptitle</span><span class="p">(</span><span class="s1">'Partial dependence of house value on nonlocation features</span><span class="se">\n</span><span class="s1">'</span>
<span class="s1">'for the California housing dataset'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">subplots_adjust</span><span class="p">(</span><span class="n">top</span><span class="o">=</span><span class="mf">0.9</span><span class="p">)</span> <span class="c1"># tight_layout causes overlap with suptitle</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'_'</span> <span class="o">*</span> <span class="mi">80</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'Custom 3d plot via ``partial_dependence``'</span><span class="p">)</span>
<span class="k">print</span>
<span class="n">fig</span> <span class="o">=</span> <a href="http://matplotlib.org/api/figure_api.html#matplotlib.figure"><span class="n">plt</span><span class="o">.</span><span class="n">figure</span></a><span class="p">()</span>
<span class="n">target_feature</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">pdp</span><span class="p">,</span> <span class="p">(</span><span class="n">x_axis</span><span class="p">,</span> <span class="n">y_axis</span><span class="p">)</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.ensemble.partial_dependence.plot_partial_dependence.html#sklearn.ensemble.partial_dependence"><span class="n">partial_dependence</span></a><span class="p">(</span><span class="n">clf</span><span class="p">,</span> <span class="n">target_feature</span><span class="p">,</span>
<span class="n">X</span><span class="o">=</span><span class="n">X_train</span><span class="p">,</span> <span class="n">grid_resolution</span><span class="o">=</span><span class="mi">50</span><span class="p">)</span>
<span class="n">XX</span><span class="p">,</span> <span class="n">YY</span> <span class="o">=</span> <a href="http://docs.scipy.org/doc/numpy-1.6.0/reference/generated/numpy.meshgrid.html#numpy.meshgrid"><span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span></a><span class="p">(</span><span class="n">x_axis</span><span class="p">,</span> <span class="n">y_axis</span><span class="p">)</span>
<span class="n">Z</span> <span class="o">=</span> <span class="n">pdp</span><span class="o">.</span><span class="n">T</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">XX</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span><span class="o">.</span><span class="n">T</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">Axes3D</span><span class="p">(</span><span class="n">fig</span><span class="p">)</span>
<span class="n">surf</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">plot_surface</span><span class="p">(</span><span class="n">XX</span><span class="p">,</span> <span class="n">YY</span><span class="p">,</span> <span class="n">Z</span><span class="p">,</span> <span class="n">rstride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">cstride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">BuPu</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="n">names</span><span class="p">[</span><span class="n">target_feature</span><span class="p">[</span><span class="mi">0</span><span class="p">]])</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="n">names</span><span class="p">[</span><span class="n">target_feature</span><span class="p">[</span><span class="mi">1</span><span class="p">]])</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_zlabel</span><span class="p">(</span><span class="s1">'Partial dependence'</span><span class="p">)</span>
<span class="c1"># pretty init view</span>
<span class="n">ax</span><span class="o">.</span><span class="n">view_init</span><span class="p">(</span><span class="n">elev</span><span class="o">=</span><span class="mi">22</span><span class="p">,</span> <span class="n">azim</span><span class="o">=</span><span class="mi">122</span><span class="p">)</span>
<a href="http://matplotlib.org/api/colorbar_api.html#matplotlib.colorbar"><span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span></a><span class="p">(</span><span class="n">surf</span><span class="p">)</span>
<a href="http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.suptitle"><span class="n">plt</span><span class="o">.</span><span class="n">suptitle</span></a><span class="p">(</span><span class="s1">'Partial dependence of house value on median age and '</span>
<span class="s1">'average occupancy'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">subplots_adjust</span><span class="p">(</span><span class="n">top</span><span class="o">=</span><span class="mf">0.9</span><span class="p">)</span>
<a href="http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
<span class="c1"># Needed on Windows because plot_partial_dependence uses multiprocessing</span>
<span class="k">if</span> <span class="n">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
<span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
<p><strong>Total running time of the example:</strong> 0.00 seconds
( 0 minutes 0.00 seconds)</p>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
<div class="footer">
© 2010 - 2014, scikit-learn developers (BSD License).
<a href="../../_sources/auto_examples/ensemble/plot_partial_dependence.txt" rel="nofollow">Show this page source</a>
</div>
<div class="rel">
<div class="buttonPrevious">
<a href="plot_gradient_boosting_quantile.html">Previous
</a>
</div>
</div>
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-22606712-2']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<script src="http://www.google.com/jsapi" type="text/javascript"></script>
<script type="text/javascript"> google.load('search', '1',
{language : 'en'}); google.setOnLoadCallback(function() {
var customSearchControl = new
google.search.CustomSearchControl('016639176250731907682:tjtqbvtvij0');
customSearchControl.setResultSetSize(google.search.Search.FILTERED_CSE_RESULTSET);
var options = new google.search.DrawOptions();
options.setAutoComplete(true);
customSearchControl.draw('cse', options); }, true);
</script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>