-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathsklearn.datasets.load_diabetes.html
540 lines (491 loc) · 32 KB
/
sklearn.datasets.load_diabetes.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta property="og:title" content="sklearn.datasets.load_diabetes" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/generated/sklearn.datasets.load_diabetes.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Examples using sklearn.datasets.load_diabetes: Gradient Boosting regression Gradient Boosting regression, Plot individual and voting regression predictions Plot individual and voting regression pre..." />
<meta property="og:image" content="https://scikit-learn/stable/_images/sphx_glr_plot_gradient_boosting_regression_thumb.png" />
<meta property="og:image:alt" content="Gradient Boosting regression" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>sklearn.datasets.load_diabetes — scikit-learn 1.1.2 documentation</title>
<link rel="canonical" href="http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html" />
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="stylesheet" href="../../_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/plot_directive.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="../../index.html">
<img
class="sk-brand-img"
src="../../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../auto_examples/index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../getting_started.html" >Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../tutorial/index.html" >Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../whats_new/v1.1.html" >What's new</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../glossary.html" >Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../faq.html" >FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../support.html" >Support</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../related_projects.html" >Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../roadmap.html" >Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../about.html" >About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="../../getting_started.html" >Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../tutorial/index.html" >Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../whats_new/v1.1.html" >What's new</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../glossary.html" >Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../faq.html" >FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../support.html" >Support</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../related_projects.html" >Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../roadmap.html" >Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../about.html" >About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="../../search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="sk-sidebar-toc-logo">
<a href="../../index.html">
<img
class="sk-brand-img"
src="../../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
</div>
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="sklearn.datasets.load_breast_cancer.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.datasets.load_breast_cancer">Prev</a><a href="../classes.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="API Reference">Up</a>
<a href="sklearn.datasets.load_digits.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.datasets.load_digits">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 1.1.2</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="../../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li><a class="reference internal" href="#"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.datasets</span></code>.load_diabetes</a><ul>
<li><a class="reference internal" href="#examples-using-sklearn-datasets-load-diabetes">Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.datasets.load_diabetes</span></code></a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<section id="sklearn-datasets-load-diabetes">
<h1><a class="reference internal" href="../classes.html#module-sklearn.datasets" title="sklearn.datasets"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.datasets</span></code></a>.load_diabetes<a class="headerlink" href="#sklearn-datasets-load-diabetes" title="Permalink to this heading">¶</a></h1>
<dl class="py function">
<dt class="sig sig-object py" id="sklearn.datasets.load_diabetes">
<span class="sig-prename descclassname"><span class="pre">sklearn.datasets.</span></span><span class="sig-name descname"><span class="pre">load_diabetes</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_X_y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">as_frame</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">scaled</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/6cb2c5237/sklearn/datasets/_base.py#L954"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.datasets.load_diabetes" title="Permalink to this definition">¶</a></dt>
<dd><p>Load and return the diabetes dataset (regression).</p>
<table class="docutils align-default">
<tbody>
<tr class="row-odd"><td><p>Samples total</p></td>
<td><p>442</p></td>
</tr>
<tr class="row-even"><td><p>Dimensionality</p></td>
<td><p>10</p></td>
</tr>
<tr class="row-odd"><td><p>Features</p></td>
<td><p>real, -.2 < x < .2</p></td>
</tr>
<tr class="row-even"><td><p>Targets</p></td>
<td><p>integer 25 - 346</p></td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>The meaning of each feature (i.e. <code class="docutils literal notranslate"><span class="pre">feature_names</span></code>) might be unclear
(especially for <code class="docutils literal notranslate"><span class="pre">ltg</span></code>) as the documentation of the original dataset is
not explicit. We provide information that seems correct in regard with
the scientific literature in this field of research.</p>
</div>
<p>Read more in the <a class="reference internal" href="../../datasets/toy_dataset.html#diabetes-dataset"><span class="std std-ref">User Guide</span></a>.</p>
<dl class="field-list">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl>
<dt><strong>return_X_y</strong><span class="classifier">bool, default=False</span></dt><dd><p>If True, returns <code class="docutils literal notranslate"><span class="pre">(data,</span> <span class="pre">target)</span></code> instead of a Bunch object.
See below for more information about the <code class="docutils literal notranslate"><span class="pre">data</span></code> and <code class="docutils literal notranslate"><span class="pre">target</span></code> object.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.18.</span></p>
</div>
</dd>
<dt><strong>as_frame</strong><span class="classifier">bool, default=False</span></dt><dd><p>If True, the data is a pandas DataFrame including columns with
appropriate dtypes (numeric). The target is
a pandas DataFrame or Series depending on the number of target columns.
If <code class="docutils literal notranslate"><span class="pre">return_X_y</span></code> is True, then (<code class="docutils literal notranslate"><span class="pre">data</span></code>, <code class="docutils literal notranslate"><span class="pre">target</span></code>) will be pandas
DataFrames or Series as described below.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.23.</span></p>
</div>
</dd>
<dt><strong>scaled</strong><span class="classifier">bool, default=True</span></dt><dd><p>If True, the feature variables are mean centered and scaled by the
standard deviation times the square root of <code class="docutils literal notranslate"><span class="pre">n_samples</span></code>.
If False, raw data is returned for the feature variables.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.1.</span></p>
</div>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl>
<dt><strong>data</strong><span class="classifier"><a class="reference internal" href="sklearn.utils.Bunch.html#sklearn.utils.Bunch" title="sklearn.utils.Bunch"><code class="xref py py-class docutils literal notranslate"><span class="pre">Bunch</span></code></a></span></dt><dd><p>Dictionary-like object, with the following attributes.</p>
<dl>
<dt>data<span class="classifier">{ndarray, dataframe} of shape (442, 10)</span></dt><dd><p>The data matrix. If <code class="docutils literal notranslate"><span class="pre">as_frame=True</span></code>, <code class="docutils literal notranslate"><span class="pre">data</span></code> will be a pandas
DataFrame.</p>
</dd>
<dt>target: {ndarray, Series} of shape (442,)</dt><dd><p>The regression target. If <code class="docutils literal notranslate"><span class="pre">as_frame=True</span></code>, <code class="docutils literal notranslate"><span class="pre">target</span></code> will be
a pandas Series.</p>
</dd>
<dt>feature_names: list</dt><dd><p>The names of the dataset columns.</p>
</dd>
<dt>frame: DataFrame of shape (442, 11)</dt><dd><p>Only present when <code class="docutils literal notranslate"><span class="pre">as_frame=True</span></code>. DataFrame with <code class="docutils literal notranslate"><span class="pre">data</span></code> and
<code class="docutils literal notranslate"><span class="pre">target</span></code>.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.23.</span></p>
</div>
</dd>
<dt>DESCR: str</dt><dd><p>The full description of the dataset.</p>
</dd>
<dt>data_filename: str</dt><dd><p>The path to the location of the data.</p>
</dd>
<dt>target_filename: str</dt><dd><p>The path to the location of the target.</p>
</dd>
</dl>
</dd>
<dt><strong>(data, target)</strong><span class="classifier">tuple if <code class="docutils literal notranslate"><span class="pre">return_X_y</span></code> is True</span></dt><dd><p>Returns a tuple of two ndarray of shape (n_samples, n_features)
A 2D array with each row representing one sample and each column
representing the features and/or target of a given sample.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.18.</span></p>
</div>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<section id="examples-using-sklearn-datasets-load-diabetes">
<h2>Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.datasets.load_diabetes</span></code><a class="headerlink" href="#examples-using-sklearn-datasets-load-diabetes" title="Permalink to this heading">¶</a></h2>
<div class="sphx-glr-thumbcontainer" tooltip="This example demonstrates Gradient Boosting to produce a predictive model from an ensemble of w..."><figure class="align-default" id="id1">
<img alt="Gradient Boosting regression" src="../../_images/sphx_glr_plot_gradient_boosting_regression_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/ensemble/plot_gradient_boosting_regression.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-regression-py"><span class="std std-ref">Gradient Boosting regression</span></a></span><a class="headerlink" href="#id1" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the..."><figure class="align-default" id="id2">
<img alt="Plot individual and voting regression predictions" src="../../_images/sphx_glr_plot_voting_regressor_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/ensemble/plot_voting_regressor.html#sphx-glr-auto-examples-ensemble-plot-voting-regressor-py"><span class="std std-ref">Plot individual and voting regression predictions</span></a></span><a class="headerlink" href="#id2" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="Demonstrate how model complexity influences both prediction accuracy and computational performa..."><figure class="align-default" id="id3">
<img alt="Model Complexity Influence" src="../../_images/sphx_glr_plot_model_complexity_influence_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/applications/plot_model_complexity_influence.html#sphx-glr-auto-examples-applications-plot-model-complexity-influence-py"><span class="std std-ref">Model Complexity Influence</span></a></span><a class="headerlink" href="#id3" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="This example illustrates and compares two approaches for feature selection: SelectFromModel whi..."><figure class="align-default" id="id4">
<img alt="Model-based and sequential feature selection" src="../../_images/sphx_glr_plot_select_from_model_diabetes_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/feature_selection/plot_select_from_model_diabetes.html#sphx-glr-auto-examples-feature-selection-plot-select-from-model-diabetes-py"><span class="std std-ref">Model-based and sequential feature selection</span></a></span><a class="headerlink" href="#id4" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent."><figure class="align-default" id="id5">
<img alt="Lasso and Elastic Net" src="../../_images/sphx_glr_plot_lasso_coordinate_descent_path_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/linear_model/plot_lasso_coordinate_descent_path.html#sphx-glr-auto-examples-linear-model-plot-lasso-coordinate-descent-path-py"><span class="std std-ref">Lasso and Elastic Net</span></a></span><a class="headerlink" href="#id5" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="This example reproduces the example of Fig. 2 of [ZHT2007]_. A LassoLarsIC estimator is fit on ..."><figure class="align-default" id="id6">
<img alt="Lasso model selection via information criteria" src="../../_images/sphx_glr_plot_lasso_lars_ic_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/linear_model/plot_lasso_lars_ic.html#sphx-glr-auto-examples-linear-model-plot-lasso-lars-ic-py"><span class="std std-ref">Lasso model selection via information criteria</span></a></span><a class="headerlink" href="#id6" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="This example focuses on model selection for Lasso models that are linear models with an L1 pena..."><figure class="align-default" id="id7">
<img alt="Lasso model selection: AIC-BIC / cross-validation" src="../../_images/sphx_glr_plot_lasso_model_selection_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/linear_model/plot_lasso_model_selection.html#sphx-glr-auto-examples-linear-model-plot-lasso-model-selection-py"><span class="std std-ref">Lasso model selection: AIC-BIC / cross-validation</span></a></span><a class="headerlink" href="#id7" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes..."><figure class="align-default" id="id8">
<img alt="Lasso path using LARS" src="../../_images/sphx_glr_plot_lasso_lars_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/linear_model/plot_lasso_lars.html#sphx-glr-auto-examples-linear-model-plot-lasso-lars-py"><span class="std std-ref">Lasso path using LARS</span></a></span><a class="headerlink" href="#id8" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="The coefficients, residual sum of squares and the coefficient of determination are also calcula..."><figure class="align-default" id="id9">
<img alt="Linear Regression Example" src="../../_images/sphx_glr_plot_ols_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py"><span class="std std-ref">Linear Regression Example</span></a></span><a class="headerlink" href="#id9" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that alth..."><figure class="align-default" id="id10">
<img alt="Sparsity Example: Fitting only features 1 and 2" src="../../_images/sphx_glr_plot_ols_3d_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/linear_model/plot_ols_3d.html#sphx-glr-auto-examples-linear-model-plot-ols-3d-py"><span class="std std-ref">Sparsity Example: Fitting only features 1 and 2</span></a></span><a class="headerlink" href="#id10" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip=" See also sphx_glr_auto_examples_miscellaneous_plot_roc_curve_visualization_api.py"><figure class="align-default" id="id11">
<img alt="Advanced Plotting With Partial Dependence" src="../../_images/sphx_glr_plot_partial_dependence_visualization_api_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/miscellaneous/plot_partial_dependence_visualization_api.html#sphx-glr-auto-examples-miscellaneous-plot-partial-dependence-visualization-api-py"><span class="std std-ref">Advanced Plotting With Partial Dependence</span></a></span><a class="headerlink" href="#id11" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="Missing values can be replaced by the mean, the median or the most frequent value using the bas..."><figure class="align-default" id="id12">
<img alt="Imputing missing values before building an estimator" src="../../_images/sphx_glr_plot_missing_values_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/impute/plot_missing_values.html#sphx-glr-auto-examples-impute-plot-missing-values-py"><span class="std std-ref">Imputing missing values before building an estimator</span></a></span><a class="headerlink" href="#id12" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="This example shows how to use cross_val_predict to visualize prediction errors."><figure class="align-default" id="id13">
<img alt="Plotting Cross-Validated Predictions" src="../../_images/sphx_glr_plot_cv_predict_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/model_selection/plot_cv_predict.html#sphx-glr-auto-examples-model-selection-plot-cv-predict-py"><span class="std std-ref">Plotting Cross-Validated Predictions</span></a></span><a class="headerlink" href="#id13" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="sphx-glr-thumbcontainer" tooltip="A tutorial exercise which uses cross-validation with linear models."><figure class="align-default" id="id14">
<img alt="Cross-validation on diabetes Dataset Exercise" src="../../_images/sphx_glr_plot_cv_diabetes_thumb.png" />
<figcaption>
<p><span class="caption-text"><a class="reference internal" href="../../auto_examples/exercises/plot_cv_diabetes.html#sphx-glr-auto-examples-exercises-plot-cv-diabetes-py"><span class="std std-ref">Cross-validation on diabetes Dataset Exercise</span></a></span><a class="headerlink" href="#id14" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
</div><div class="clearer"></div></section>
</section>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2022, scikit-learn developers (BSD License).
<a href="../../_sources/modules/generated/sklearn.datasets.load_diabetes.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="../../_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
var hide_text = 'Hide prompts and outputs';
var show_text = 'Show prompts and outputs';
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
if (jthis.find('.gp').length > 0) {
var button = $('<span class="copybutton">>>></span>');
button.attr('title', hide_text);
button.data('hidden', 'false');
jthis.prepend(button);
}
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
// define the behavior of the button when it's clicked
$('.copybutton').click(function(e){
e.preventDefault();
var button = $(this);
if (button.data('hidden') === 'false') {
// hide the code output
button.parent().find('.go, .gp, .gt').hide();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'hidden');
button.css('text-decoration', 'line-through');
button.attr('title', show_text);
button.data('hidden', 'true');
} else {
// show the code output
button.parent().find('.go, .gp, .gt').show();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'visible');
button.css('text-decoration', 'none');
button.attr('title', hide_text);
button.data('hidden', 'false');
}
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
/*** Hide navbar when scrolling down ***/
// Returns true when headerlink target matches hash in url
(function() {
hashTargetOnTop = function() {
var hash = window.location.hash;
if ( hash.length < 2 ) { return false; }
var target = document.getElementById( hash.slice(1) );
if ( target === null ) { return false; }
var top = target.getBoundingClientRect().top;
return (top < 2) && (top > -2);
};
// Hide navbar on load if hash target is on top
var navBar = document.getElementById("navbar");
var navBarToggler = document.getElementById("sk-navbar-toggler");
var navBarHeightHidden = "-" + navBar.getBoundingClientRect().height + "px";
var $window = $(window);
hideNavBar = function() {
navBar.style.top = navBarHeightHidden;
};
showNavBar = function() {
navBar.style.top = "0";
}
if (hashTargetOnTop()) {
hideNavBar()
}
var prevScrollpos = window.pageYOffset;
hideOnScroll = function(lastScrollTop) {
if (($window.width() < 768) && (navBarToggler.getAttribute("aria-expanded") === 'true')) {
return;
}
if (lastScrollTop > 2 && (prevScrollpos <= lastScrollTop) || hashTargetOnTop()){
hideNavBar()
} else {
showNavBar()
}
prevScrollpos = lastScrollTop;
};
/*** high performance scroll event listener***/
var raf = window.requestAnimationFrame ||
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.msRequestAnimationFrame ||
window.oRequestAnimationFrame;
var lastScrollTop = $window.scrollTop();
if (raf) {
loop();
}
function loop() {
var scrollTop = $window.scrollTop();
if (lastScrollTop === scrollTop) {
raf(loop);
return;
} else {
lastScrollTop = scrollTop;
hideOnScroll(lastScrollTop);
raf(loop);
}
}
})();
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>