-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathnaive_bayes.html
1024 lines (794 loc) · 56.6 KB
/
naive_bayes.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta property="og:title" content="1.9. Naive Bayes" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/naive_bayes.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem with the “naive” assumption of conditional independence between every pair of features given the val..." />
<meta property="og:image" content="https://scikit-learn.org/stable/_static/scikit-learn-logo-small.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem with the “naive” assumption of conditional independence between every pair of features given the val..." />
<title>1.9. Naive Bayes — scikit-learn 1.7.dev0 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" />
<link rel="stylesheet" type="text/css" href="../_static/jupyterlite_sphinx.css?v=2c9f8f05" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery.css?v=d2d258e8" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-binder.css?v=f4aeca0c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-dataframe.css?v=2082cf3c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-rendered-html.css?v=1277b6f3" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../_static/styles/colors.css?v=cc94ab7d" />
<link rel="stylesheet" type="text/css" href="../_static/styles/custom.css?v=8f525996" />
<!-- So that users can add custom icons -->
<script src="../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../_static/documentation_options.js?v=473747f4"></script>
<script src="../_static/doctools.js?v=9bcbadda"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=97f0b27d"></script>
<script src="../_static/jupyterlite_sphinx.js?v=96e329c5"></script>
<script src="../_static/design-tabs.js?v=f930bc37"></script>
<script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'modules/naive_bayes';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.7.dev0';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
true;
</script>
<script src="../_static/scripts/dropdown.js?v=d6825577"></script>
<script src="../_static/scripts/version-switcher.js?v=a6dd8357"></script>
<script src="../_static/scripts/sg_plotly_resize.js?v=2167d4db"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/modules/naive_bayes.html" />
<link rel="icon" href="../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../about.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="1.10. Decision Trees" href="tree.html" />
<link rel="prev" title="1.8. Cross decomposition" href="cross_decomposition.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.7" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class=" navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/>
<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-dark pst-js-only" alt="scikit-learn homepage"/>
</a></div>
</div>
<div class=" navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button"
data-bs-toggle="dropdown" aria-expanded="false"
aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../developers/index.html">
Development
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../support.html">
Support
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../developers/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../support.html">
Support
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 current active has-children"><a class="reference internal" href="../supervised_learning.html">1. Supervised learning</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="linear_model.html">1.1. Linear Models</a></li>
<li class="toctree-l2"><a class="reference internal" href="lda_qda.html">1.2. Linear and Quadratic Discriminant Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_ridge.html">1.3. Kernel ridge regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="svm.html">1.4. Support Vector Machines</a></li>
<li class="toctree-l2"><a class="reference internal" href="sgd.html">1.5. Stochastic Gradient Descent</a></li>
<li class="toctree-l2"><a class="reference internal" href="neighbors.html">1.6. Nearest Neighbors</a></li>
<li class="toctree-l2"><a class="reference internal" href="gaussian_process.html">1.7. Gaussian Processes</a></li>
<li class="toctree-l2"><a class="reference internal" href="cross_decomposition.html">1.8. Cross decomposition</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">1.9. Naive Bayes</a></li>
<li class="toctree-l2"><a class="reference internal" href="tree.html">1.10. Decision Trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="ensemble.html">1.11. Ensembles: Gradient boosting, random forests, bagging, voting, stacking</a></li>
<li class="toctree-l2"><a class="reference internal" href="multiclass.html">1.12. Multiclass and multioutput algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_selection.html">1.13. Feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="semi_supervised.html">1.14. Semi-supervised learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="isotonic.html">1.15. Isotonic regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="calibration.html">1.16. Probability calibration</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_supervised.html">1.17. Neural network models (supervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../unsupervised_learning.html">2. Unsupervised learning</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="mixture.html">2.1. Gaussian mixture models</a></li>
<li class="toctree-l2"><a class="reference internal" href="manifold.html">2.2. Manifold learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="clustering.html">2.3. Clustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="biclustering.html">2.4. Biclustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="decomposition.html">2.5. Decomposing signals in components (matrix factorization problems)</a></li>
<li class="toctree-l2"><a class="reference internal" href="covariance.html">2.6. Covariance estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="outlier_detection.html">2.7. Novelty and Outlier Detection</a></li>
<li class="toctree-l2"><a class="reference internal" href="density.html">2.8. Density Estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_unsupervised.html">2.9. Neural network models (unsupervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../model_selection.html">3. Model selection and evaluation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="cross_validation.html">3.1. Cross-validation: evaluating estimator performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="grid_search.html">3.2. Tuning the hyper-parameters of an estimator</a></li>
<li class="toctree-l2"><a class="reference internal" href="classification_threshold.html">3.3. Tuning the decision threshold for class prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="model_evaluation.html">3.4. Metrics and scoring: quantifying the quality of predictions</a></li>
<li class="toctree-l2"><a class="reference internal" href="learning_curve.html">3.5. Validation curves: plotting scores to evaluate models</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../metadata_routing.html">4. Metadata Routing</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../inspection.html">5. Inspection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="partial_dependence.html">5.1. Partial Dependence and Individual Conditional Expectation plots</a></li>
<li class="toctree-l2"><a class="reference internal" href="permutation_importance.html">5.2. Permutation feature importance</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../visualizations.html">6. Visualizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../data_transforms.html">7. Dataset transformations</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="compose.html">7.1. Pipelines and composite estimators</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_extraction.html">7.2. Feature extraction</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing.html">7.3. Preprocessing data</a></li>
<li class="toctree-l2"><a class="reference internal" href="impute.html">7.4. Imputation of missing values</a></li>
<li class="toctree-l2"><a class="reference internal" href="unsupervised_reduction.html">7.5. Unsupervised dimensionality reduction</a></li>
<li class="toctree-l2"><a class="reference internal" href="random_projection.html">7.6. Random Projection</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_approximation.html">7.7. Kernel Approximation</a></li>
<li class="toctree-l2"><a class="reference internal" href="metrics.html">7.8. Pairwise metrics, Affinities and Kernels</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing_targets.html">7.9. Transforming the prediction target (<code class="docutils literal notranslate"><span class="pre">y</span></code>)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../datasets.html">8. Dataset loading utilities</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../datasets/toy_dataset.html">8.1. Toy datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/real_world.html">8.2. Real world datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/sample_generators.html">8.3. Generated datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/loading_other_datasets.html">8.4. Loading other datasets</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../computing.html">9. Computing with scikit-learn</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../computing/scaling_strategies.html">9.1. Strategies to scale computationally: bigger data</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/computational_performance.html">9.2. Computational Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/parallelism.html">9.3. Parallelism, resource management, and configuration</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../model_persistence.html">10. Model persistence</a></li>
<li class="toctree-l1"><a class="reference internal" href="../common_pitfalls.html">11. Common pitfalls and recommended practices</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../dispatching.html">12. Dispatching</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="array_api.html">12.1. Array API support (experimental)</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../machine_learning_map.html">13. Choosing the right estimator</a></li>
<li class="toctree-l1"><a class="reference internal" href="../presentations.html">14. External Resources, Videos and Talks</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../user_guide.html" class="nav-link">User Guide</a></li>
<li class="breadcrumb-item"><a href="../supervised_learning.html" class="nav-link"><span class="section-number">1. </span>Supervised learning</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis"><span class="section-number">1.9. </span>Naive Bayes</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="naive-bayes">
<span id="id1"></span><h1><span class="section-number">1.9. </span>Naive Bayes<a class="headerlink" href="#naive-bayes" title="Link to this heading">#</a></h1>
<p>Naive Bayes methods are a set of supervised learning algorithms
based on applying Bayes’ theorem with the “naive” assumption of
conditional independence between every pair of features given the
value of the class variable. Bayes’ theorem states the following
relationship, given class variable <span class="math notranslate nohighlight">\(y\)</span> and dependent feature
vector <span class="math notranslate nohighlight">\(x_1\)</span> through <span class="math notranslate nohighlight">\(x_n\)</span>, :</p>
<div class="math notranslate nohighlight">
\[P(y \mid x_1, \dots, x_n) = \frac{P(y) P(x_1, \dots, x_n \mid y)}
{P(x_1, \dots, x_n)}\]</div>
<p>Using the naive conditional independence assumption that</p>
<div class="math notranslate nohighlight">
\[P(x_i | y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i | y),\]</div>
<p>for all <span class="math notranslate nohighlight">\(i\)</span>, this relationship is simplified to</p>
<div class="math notranslate nohighlight">
\[P(y \mid x_1, \dots, x_n) = \frac{P(y) \prod_{i=1}^{n} P(x_i \mid y)}
{P(x_1, \dots, x_n)}\]</div>
<p>Since <span class="math notranslate nohighlight">\(P(x_1, \dots, x_n)\)</span> is constant given the input,
we can use the following classification rule:</p>
<div class="math notranslate nohighlight">
\[ \begin{align}\begin{aligned}P(y \mid x_1, \dots, x_n) \propto P(y) \prod_{i=1}^{n} P(x_i \mid y)\\\Downarrow\\\hat{y} = \arg\max_y P(y) \prod_{i=1}^{n} P(x_i \mid y),\end{aligned}\end{align} \]</div>
<p>and we can use Maximum A Posteriori (MAP) estimation to estimate
<span class="math notranslate nohighlight">\(P(y)\)</span> and <span class="math notranslate nohighlight">\(P(x_i \mid y)\)</span>;
the former is then the relative frequency of class <span class="math notranslate nohighlight">\(y\)</span>
in the training set.</p>
<p>The different naive Bayes classifiers differ mainly by the assumptions they
make regarding the distribution of <span class="math notranslate nohighlight">\(P(x_i \mid y)\)</span>.</p>
<p>In spite of their apparently over-simplified assumptions, naive Bayes
classifiers have worked quite well in many real-world situations, famously
document classification and spam filtering. They require a small amount
of training data to estimate the necessary parameters. (For theoretical
reasons why naive Bayes works well, and on which types of data it does, see
the references below.)</p>
<p>Naive Bayes learners and classifiers can be extremely fast compared to more
sophisticated methods.
The decoupling of the class conditional feature distributions means that each
distribution can be independently estimated as a one dimensional distribution.
This in turn helps to alleviate problems stemming from the curse of
dimensionality.</p>
<p>On the flip side, although naive Bayes is known as a decent classifier,
it is known to be a bad estimator, so the probability outputs from
<code class="docutils literal notranslate"><span class="pre">predict_proba</span></code> are not to be taken too seriously.</p>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="references">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">References<a class="headerlink" href="#references" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<ul class="simple">
<li><p class="sd-card-text">H. Zhang (2004). <a class="reference external" href="https://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf">The optimality of Naive Bayes.</a>
Proc. FLAIRS.</p></li>
</ul>
</div>
</details><section id="gaussian-naive-bayes">
<span id="id2"></span><h2><span class="section-number">1.9.1. </span>Gaussian Naive Bayes<a class="headerlink" href="#gaussian-naive-bayes" title="Link to this heading">#</a></h2>
<p><a class="reference internal" href="generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB" title="sklearn.naive_bayes.GaussianNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">GaussianNB</span></code></a> implements the Gaussian Naive Bayes algorithm for
classification. The likelihood of the features is assumed to be Gaussian:</p>
<div class="math notranslate nohighlight">
\[P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma^2_y}} \exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma^2_y}\right)\]</div>
<p>The parameters <span class="math notranslate nohighlight">\(\sigma_y\)</span> and <span class="math notranslate nohighlight">\(\mu_y\)</span>
are estimated using maximum likelihood.</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span><span class="w"> </span><span class="nn">sklearn.datasets</span><span class="w"> </span><span class="kn">import</span> <span class="n">load_iris</span>
<span class="gp">>>> </span><span class="kn">from</span><span class="w"> </span><span class="nn">sklearn.model_selection</span><span class="w"> </span><span class="kn">import</span> <span class="n">train_test_split</span>
<span class="gp">>>> </span><span class="kn">from</span><span class="w"> </span><span class="nn">sklearn.naive_bayes</span><span class="w"> </span><span class="kn">import</span> <span class="n">GaussianNB</span>
<span class="gp">>>> </span><span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">load_iris</span><span class="p">(</span><span class="n">return_X_y</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">gnb</span> <span class="o">=</span> <span class="n">GaussianNB</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">y_pred</span> <span class="o">=</span> <span class="n">gnb</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="s2">"Number of mislabeled points out of a total </span><span class="si">%d</span><span class="s2"> points : </span><span class="si">%d</span><span class="s2">"</span>
<span class="gp">... </span> <span class="o">%</span> <span class="p">(</span><span class="n">X_test</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">(</span><span class="n">y_test</span> <span class="o">!=</span> <span class="n">y_pred</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()))</span>
<span class="go">Number of mislabeled points out of a total 75 points : 4</span>
</pre></div>
</div>
</section>
<section id="multinomial-naive-bayes">
<span id="id3"></span><h2><span class="section-number">1.9.2. </span>Multinomial Naive Bayes<a class="headerlink" href="#multinomial-naive-bayes" title="Link to this heading">#</a></h2>
<p><a class="reference internal" href="generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB" title="sklearn.naive_bayes.MultinomialNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">MultinomialNB</span></code></a> implements the naive Bayes algorithm for multinomially
distributed data, and is one of the two classic naive Bayes variants used in
text classification (where the data are typically represented as word vector
counts, although tf-idf vectors are also known to work well in practice).
The distribution is parametrized by vectors
<span class="math notranslate nohighlight">\(\theta_y = (\theta_{y1},\ldots,\theta_{yn})\)</span>
for each class <span class="math notranslate nohighlight">\(y\)</span>, where <span class="math notranslate nohighlight">\(n\)</span> is the number of features
(in text classification, the size of the vocabulary)
and <span class="math notranslate nohighlight">\(\theta_{yi}\)</span> is the probability <span class="math notranslate nohighlight">\(P(x_i \mid y)\)</span>
of feature <span class="math notranslate nohighlight">\(i\)</span> appearing in a sample belonging to class <span class="math notranslate nohighlight">\(y\)</span>.</p>
<p>The parameters <span class="math notranslate nohighlight">\(\theta_y\)</span> are estimated by a smoothed
version of maximum likelihood, i.e. relative frequency counting:</p>
<div class="math notranslate nohighlight">
\[\hat{\theta}_{yi} = \frac{ N_{yi} + \alpha}{N_y + \alpha n}\]</div>
<p>where <span class="math notranslate nohighlight">\(N_{yi} = \sum_{x \in T} x_i\)</span> is
the number of times feature <span class="math notranslate nohighlight">\(i\)</span> appears in all samples of class <span class="math notranslate nohighlight">\(y\)</span>
in the training set <span class="math notranslate nohighlight">\(T\)</span>,
and <span class="math notranslate nohighlight">\(N_{y} = \sum_{i=1}^{n} N_{yi}\)</span> is the total count of
all features for class <span class="math notranslate nohighlight">\(y\)</span>.</p>
<p>The smoothing priors <span class="math notranslate nohighlight">\(\alpha \ge 0\)</span> account for
features not present in the learning samples and prevent zero probabilities
in further computations.
Setting <span class="math notranslate nohighlight">\(\alpha = 1\)</span> is called Laplace smoothing,
while <span class="math notranslate nohighlight">\(\alpha < 1\)</span> is called Lidstone smoothing.</p>
</section>
<section id="complement-naive-bayes">
<span id="id4"></span><h2><span class="section-number">1.9.3. </span>Complement Naive Bayes<a class="headerlink" href="#complement-naive-bayes" title="Link to this heading">#</a></h2>
<p><a class="reference internal" href="generated/sklearn.naive_bayes.ComplementNB.html#sklearn.naive_bayes.ComplementNB" title="sklearn.naive_bayes.ComplementNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">ComplementNB</span></code></a> implements the complement naive Bayes (CNB) algorithm.
CNB is an adaptation of the standard multinomial naive Bayes (MNB) algorithm
that is particularly suited for imbalanced data sets. Specifically, CNB uses
statistics from the <em>complement</em> of each class to compute the model’s weights.
The inventors of CNB show empirically that the parameter estimates for CNB are
more stable than those for MNB. Further, CNB regularly outperforms MNB (often
by a considerable margin) on text classification tasks.</p>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="weights-calculation">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">Weights calculation<a class="headerlink" href="#weights-calculation" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<p class="sd-card-text">The procedure for calculating the weights is as follows:</p>
<div class="math notranslate nohighlight">
\[ \begin{align}\begin{aligned}\hat{\theta}_{ci} = \frac{\alpha_i + \sum_{j:y_j \neq c} d_{ij}}
{\alpha + \sum_{j:y_j \neq c} \sum_{k} d_{kj}}\\w_{ci} = \log \hat{\theta}_{ci}\\w_{ci} = \frac{w_{ci}}{\sum_{j} |w_{cj}|}\end{aligned}\end{align} \]</div>
<p class="sd-card-text">where the summations are over all documents <span class="math notranslate nohighlight">\(j\)</span> not in class <span class="math notranslate nohighlight">\(c\)</span>,
<span class="math notranslate nohighlight">\(d_{ij}\)</span> is either the count or tf-idf value of term <span class="math notranslate nohighlight">\(i\)</span> in document
<span class="math notranslate nohighlight">\(j\)</span>, <span class="math notranslate nohighlight">\(\alpha_i\)</span> is a smoothing hyperparameter like that found in
MNB, and <span class="math notranslate nohighlight">\(\alpha = \sum_{i} \alpha_i\)</span>. The second normalization addresses
the tendency for longer documents to dominate parameter estimates in MNB. The
classification rule is:</p>
<div class="math notranslate nohighlight">
\[\hat{c} = \arg\min_c \sum_{i} t_i w_{ci}\]</div>
<p class="sd-card-text">i.e., a document is assigned to the class that is the <em>poorest</em> complement
match.</p>
</div>
</details><details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="references-2">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">References<a class="headerlink" href="#references-2" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<ul class="simple">
<li><p class="sd-card-text">Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003).
<a class="reference external" href="https://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf">Tackling the poor assumptions of naive bayes text classifiers.</a>
In ICML (Vol. 3, pp. 616-623).</p></li>
</ul>
</div>
</details></section>
<section id="bernoulli-naive-bayes">
<span id="id5"></span><h2><span class="section-number">1.9.4. </span>Bernoulli Naive Bayes<a class="headerlink" href="#bernoulli-naive-bayes" title="Link to this heading">#</a></h2>
<p><a class="reference internal" href="generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB" title="sklearn.naive_bayes.BernoulliNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">BernoulliNB</span></code></a> implements the naive Bayes training and classification
algorithms for data that is distributed according to multivariate Bernoulli
distributions; i.e., there may be multiple features but each one is assumed
to be a binary-valued (Bernoulli, boolean) variable.
Therefore, this class requires samples to be represented as binary-valued
feature vectors; if handed any other kind of data, a <a class="reference internal" href="generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB" title="sklearn.naive_bayes.BernoulliNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">BernoulliNB</span></code></a> instance
may binarize its input (depending on the <code class="docutils literal notranslate"><span class="pre">binarize</span></code> parameter).</p>
<p>The decision rule for Bernoulli naive Bayes is based on</p>
<div class="math notranslate nohighlight">
\[P(x_i \mid y) = P(x_i = 1 \mid y) x_i + (1 - P(x_i = 1 \mid y)) (1 - x_i)\]</div>
<p>which differs from multinomial NB’s rule
in that it explicitly penalizes the non-occurrence of a feature <span class="math notranslate nohighlight">\(i\)</span>
that is an indicator for class <span class="math notranslate nohighlight">\(y\)</span>,
where the multinomial variant would simply ignore a non-occurring feature.</p>
<p>In the case of text classification, word occurrence vectors (rather than word
count vectors) may be used to train and use this classifier. <a class="reference internal" href="generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB" title="sklearn.naive_bayes.BernoulliNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">BernoulliNB</span></code></a>
might perform better on some datasets, especially those with shorter documents.
It is advisable to evaluate both models, if time permits.</p>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="references-3">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">References<a class="headerlink" href="#references-3" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<ul class="simple">
<li><p class="sd-card-text">C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to
Information Retrieval. Cambridge University Press, pp. 234-265.</p></li>
<li><p class="sd-card-text">A. McCallum and K. Nigam (1998).
<a class="reference external" href="https://citeseerx.ist.psu.edu/doc_view/pid/04ce064505b1635583fa0d9cc07cac7e9ea993cc">A comparison of event models for Naive Bayes text classification.</a>
Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.</p></li>
<li><p class="sd-card-text">V. Metsis, I. Androutsopoulos and G. Paliouras (2006).
<a class="reference external" href="https://citeseerx.ist.psu.edu/doc_view/pid/8bd0934b366b539ec95e683ae39f8abb29ccc757">Spam filtering with Naive Bayes – Which Naive Bayes?</a>
3rd Conf. on Email and Anti-Spam (CEAS).</p></li>
</ul>
</div>
</details></section>
<section id="categorical-naive-bayes">
<span id="id6"></span><h2><span class="section-number">1.9.5. </span>Categorical Naive Bayes<a class="headerlink" href="#categorical-naive-bayes" title="Link to this heading">#</a></h2>
<p><a class="reference internal" href="generated/sklearn.naive_bayes.CategoricalNB.html#sklearn.naive_bayes.CategoricalNB" title="sklearn.naive_bayes.CategoricalNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">CategoricalNB</span></code></a> implements the categorical naive Bayes
algorithm for categorically distributed data. It assumes that each feature,
which is described by the index <span class="math notranslate nohighlight">\(i\)</span>, has its own categorical
distribution.</p>
<p>For each feature <span class="math notranslate nohighlight">\(i\)</span> in the training set <span class="math notranslate nohighlight">\(X\)</span>,
<a class="reference internal" href="generated/sklearn.naive_bayes.CategoricalNB.html#sklearn.naive_bayes.CategoricalNB" title="sklearn.naive_bayes.CategoricalNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">CategoricalNB</span></code></a> estimates a categorical distribution for each feature i
of X conditioned on the class y. The index set of the samples is defined as
<span class="math notranslate nohighlight">\(J = \{ 1, \dots, m \}\)</span>, with <span class="math notranslate nohighlight">\(m\)</span> as the number of samples.</p>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="probability-calculation">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">Probability calculation<a class="headerlink" href="#probability-calculation" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<p class="sd-card-text">The probability of category <span class="math notranslate nohighlight">\(t\)</span> in feature <span class="math notranslate nohighlight">\(i\)</span> given class
<span class="math notranslate nohighlight">\(c\)</span> is estimated as:</p>
<div class="math notranslate nohighlight">
\[P(x_i = t \mid y = c \: ;\, \alpha) = \frac{ N_{tic} + \alpha}{N_{c} +
\alpha n_i},\]</div>
<p class="sd-card-text">where <span class="math notranslate nohighlight">\(N_{tic} = |\{j \in J \mid x_{ij} = t, y_j = c\}|\)</span> is the number
of times category <span class="math notranslate nohighlight">\(t\)</span> appears in the samples <span class="math notranslate nohighlight">\(x_{i}\)</span>, which belong
to class <span class="math notranslate nohighlight">\(c\)</span>, <span class="math notranslate nohighlight">\(N_{c} = |\{ j \in J\mid y_j = c\}|\)</span> is the number
of samples with class c, <span class="math notranslate nohighlight">\(\alpha\)</span> is a smoothing parameter and
<span class="math notranslate nohighlight">\(n_i\)</span> is the number of available categories of feature <span class="math notranslate nohighlight">\(i\)</span>.</p>
</div>
</details><p><a class="reference internal" href="generated/sklearn.naive_bayes.CategoricalNB.html#sklearn.naive_bayes.CategoricalNB" title="sklearn.naive_bayes.CategoricalNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">CategoricalNB</span></code></a> assumes that the sample matrix <span class="math notranslate nohighlight">\(X\)</span> is encoded (for
instance with the help of <a class="reference internal" href="generated/sklearn.preprocessing.OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder" title="sklearn.preprocessing.OrdinalEncoder"><code class="xref py py-class docutils literal notranslate"><span class="pre">OrdinalEncoder</span></code></a>) such
that all categories for each feature <span class="math notranslate nohighlight">\(i\)</span> are represented with numbers
<span class="math notranslate nohighlight">\(0, ..., n_i - 1\)</span> where <span class="math notranslate nohighlight">\(n_i\)</span> is the number of available categories
of feature <span class="math notranslate nohighlight">\(i\)</span>.</p>
</section>
<section id="out-of-core-naive-bayes-model-fitting">
<h2><span class="section-number">1.9.6. </span>Out-of-core naive Bayes model fitting<a class="headerlink" href="#out-of-core-naive-bayes-model-fitting" title="Link to this heading">#</a></h2>
<p>Naive Bayes models can be used to tackle large scale classification problems
for which the full training set might not fit in memory. To handle this case,
<a class="reference internal" href="generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB" title="sklearn.naive_bayes.MultinomialNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">MultinomialNB</span></code></a>, <a class="reference internal" href="generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB" title="sklearn.naive_bayes.BernoulliNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">BernoulliNB</span></code></a>, and <a class="reference internal" href="generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB" title="sklearn.naive_bayes.GaussianNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">GaussianNB</span></code></a>
expose a <code class="docutils literal notranslate"><span class="pre">partial_fit</span></code> method that can be used
incrementally as done with other classifiers as demonstrated in
<a class="reference internal" href="../auto_examples/applications/plot_out_of_core_classification.html#sphx-glr-auto-examples-applications-plot-out-of-core-classification-py"><span class="std std-ref">Out-of-core classification of text documents</span></a>. All naive Bayes
classifiers support sample weighting.</p>
<p>Contrary to the <code class="docutils literal notranslate"><span class="pre">fit</span></code> method, the first call to <code class="docutils literal notranslate"><span class="pre">partial_fit</span></code> needs to be
passed the list of all the expected class labels.</p>
<p>For an overview of available strategies in scikit-learn, see also the
<a class="reference internal" href="../computing/scaling_strategies.html#scaling-strategies"><span class="std std-ref">out-of-core learning</span></a> documentation.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>The <code class="docutils literal notranslate"><span class="pre">partial_fit</span></code> method call of naive Bayes models introduces some
computational overhead. It is recommended to use data chunk sizes that are as
large as possible, that is as the available RAM allows.</p>
</div>
</section>
</section>
</article>
<footer class="bd-footer-article">
<div class="footer-article-items footer-article__inner">
<div class="footer-article-item">
<div class="prev-next-area">
<a class="left-prev"
href="cross_decomposition.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title"><span class="section-number">1.8. </span>Cross decomposition</p>
</div>
</a>
<a class="right-next"
href="tree.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title"><span class="section-number">1.10. </span>Decision Trees</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div></div>
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#gaussian-naive-bayes">1.9.1. Gaussian Naive Bayes</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#multinomial-naive-bayes">1.9.2. Multinomial Naive Bayes</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#complement-naive-bayes">1.9.3. Complement Naive Bayes</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#bernoulli-naive-bayes">1.9.4. Bernoulli Naive Bayes</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#categorical-naive-bayes">1.9.5. Categorical Naive Bayes</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#out-of-core-naive-bayes-model-fitting">1.9.6. Out-of-core naive Bayes model fitting</a></li>
</ul>
</nav></div>
<div class="sidebar-secondary-item">
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="../_sources/modules/naive_bayes.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>