-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathcalibration.html
1094 lines (864 loc) · 62.9 KB
/
calibration.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta property="og:title" content="1.16. Probability calibration" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/calibration.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="When performing classification you often want not only to predict the class label, but also obtain a probability of the respective label. This probability gives you some kind of confidence on the p..." />
<meta property="og:image" content="https://scikit-learn/stable/_images/sphx_glr_plot_compare_calibration_001.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="When performing classification you often want not only to predict the class label, but also obtain a probability of the respective label. This probability gives you some kind of confidence on the p..." />
<title>1.16. Probability calibration — scikit-learn 1.7.dev0 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" />
<link rel="stylesheet" type="text/css" href="../_static/jupyterlite_sphinx.css?v=2c9f8f05" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery.css?v=d2d258e8" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-binder.css?v=f4aeca0c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-dataframe.css?v=2082cf3c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-rendered-html.css?v=1277b6f3" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../_static/styles/colors.css?v=cc94ab7d" />
<link rel="stylesheet" type="text/css" href="../_static/styles/custom.css?v=8f525996" />
<!-- So that users can add custom icons -->
<script src="../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../_static/documentation_options.js?v=473747f4"></script>
<script src="../_static/doctools.js?v=9bcbadda"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=97f0b27d"></script>
<script src="../_static/jupyterlite_sphinx.js?v=96e329c5"></script>
<script src="../_static/design-tabs.js?v=f930bc37"></script>
<script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'modules/calibration';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.7.dev0';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
true;
</script>
<script src="../_static/scripts/dropdown.js?v=d6825577"></script>
<script src="../_static/scripts/version-switcher.js?v=a6dd8357"></script>
<script src="../_static/scripts/sg_plotly_resize.js?v=2167d4db"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/modules/calibration.html" />
<link rel="icon" href="../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../about.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="1.17. Neural network models (supervised)" href="neural_networks_supervised.html" />
<link rel="prev" title="1.15. Isotonic regression" href="isotonic.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.7" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class=" navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/>
<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-dark pst-js-only" alt="scikit-learn homepage"/>
</a></div>
</div>
<div class=" navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button"
data-bs-toggle="dropdown" aria-expanded="false"
aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../developers/index.html">
Development
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../support.html">
Support
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../developers/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../support.html">
Support
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 current active has-children"><a class="reference internal" href="../supervised_learning.html">1. Supervised learning</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="linear_model.html">1.1. Linear Models</a></li>
<li class="toctree-l2"><a class="reference internal" href="lda_qda.html">1.2. Linear and Quadratic Discriminant Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_ridge.html">1.3. Kernel ridge regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="svm.html">1.4. Support Vector Machines</a></li>
<li class="toctree-l2"><a class="reference internal" href="sgd.html">1.5. Stochastic Gradient Descent</a></li>
<li class="toctree-l2"><a class="reference internal" href="neighbors.html">1.6. Nearest Neighbors</a></li>
<li class="toctree-l2"><a class="reference internal" href="gaussian_process.html">1.7. Gaussian Processes</a></li>
<li class="toctree-l2"><a class="reference internal" href="cross_decomposition.html">1.8. Cross decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="naive_bayes.html">1.9. Naive Bayes</a></li>
<li class="toctree-l2"><a class="reference internal" href="tree.html">1.10. Decision Trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="ensemble.html">1.11. Ensembles: Gradient boosting, random forests, bagging, voting, stacking</a></li>
<li class="toctree-l2"><a class="reference internal" href="multiclass.html">1.12. Multiclass and multioutput algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_selection.html">1.13. Feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="semi_supervised.html">1.14. Semi-supervised learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="isotonic.html">1.15. Isotonic regression</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">1.16. Probability calibration</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_supervised.html">1.17. Neural network models (supervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../unsupervised_learning.html">2. Unsupervised learning</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="mixture.html">2.1. Gaussian mixture models</a></li>
<li class="toctree-l2"><a class="reference internal" href="manifold.html">2.2. Manifold learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="clustering.html">2.3. Clustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="biclustering.html">2.4. Biclustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="decomposition.html">2.5. Decomposing signals in components (matrix factorization problems)</a></li>
<li class="toctree-l2"><a class="reference internal" href="covariance.html">2.6. Covariance estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="outlier_detection.html">2.7. Novelty and Outlier Detection</a></li>
<li class="toctree-l2"><a class="reference internal" href="density.html">2.8. Density Estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_unsupervised.html">2.9. Neural network models (unsupervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../model_selection.html">3. Model selection and evaluation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="cross_validation.html">3.1. Cross-validation: evaluating estimator performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="grid_search.html">3.2. Tuning the hyper-parameters of an estimator</a></li>
<li class="toctree-l2"><a class="reference internal" href="classification_threshold.html">3.3. Tuning the decision threshold for class prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="model_evaluation.html">3.4. Metrics and scoring: quantifying the quality of predictions</a></li>
<li class="toctree-l2"><a class="reference internal" href="learning_curve.html">3.5. Validation curves: plotting scores to evaluate models</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../metadata_routing.html">4. Metadata Routing</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../inspection.html">5. Inspection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="partial_dependence.html">5.1. Partial Dependence and Individual Conditional Expectation plots</a></li>
<li class="toctree-l2"><a class="reference internal" href="permutation_importance.html">5.2. Permutation feature importance</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../visualizations.html">6. Visualizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../data_transforms.html">7. Dataset transformations</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="compose.html">7.1. Pipelines and composite estimators</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_extraction.html">7.2. Feature extraction</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing.html">7.3. Preprocessing data</a></li>
<li class="toctree-l2"><a class="reference internal" href="impute.html">7.4. Imputation of missing values</a></li>
<li class="toctree-l2"><a class="reference internal" href="unsupervised_reduction.html">7.5. Unsupervised dimensionality reduction</a></li>
<li class="toctree-l2"><a class="reference internal" href="random_projection.html">7.6. Random Projection</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_approximation.html">7.7. Kernel Approximation</a></li>
<li class="toctree-l2"><a class="reference internal" href="metrics.html">7.8. Pairwise metrics, Affinities and Kernels</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing_targets.html">7.9. Transforming the prediction target (<code class="docutils literal notranslate"><span class="pre">y</span></code>)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../datasets.html">8. Dataset loading utilities</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../datasets/toy_dataset.html">8.1. Toy datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/real_world.html">8.2. Real world datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/sample_generators.html">8.3. Generated datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/loading_other_datasets.html">8.4. Loading other datasets</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../computing.html">9. Computing with scikit-learn</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../computing/scaling_strategies.html">9.1. Strategies to scale computationally: bigger data</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/computational_performance.html">9.2. Computational Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/parallelism.html">9.3. Parallelism, resource management, and configuration</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../model_persistence.html">10. Model persistence</a></li>
<li class="toctree-l1"><a class="reference internal" href="../common_pitfalls.html">11. Common pitfalls and recommended practices</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../dispatching.html">12. Dispatching</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="array_api.html">12.1. Array API support (experimental)</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../machine_learning_map.html">13. Choosing the right estimator</a></li>
<li class="toctree-l1"><a class="reference internal" href="../presentations.html">14. External Resources, Videos and Talks</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../user_guide.html" class="nav-link">User Guide</a></li>
<li class="breadcrumb-item"><a href="../supervised_learning.html" class="nav-link"><span class="section-number">1. </span>Supervised learning</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis"><span class="section-number">1.16. </span>Probability calibration</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="probability-calibration">
<span id="calibration"></span><h1><span class="section-number">1.16. </span>Probability calibration<a class="headerlink" href="#probability-calibration" title="Link to this heading">#</a></h1>
<p>When performing classification you often want not only to predict the class
label, but also obtain a probability of the respective label. This probability
gives you some kind of confidence on the prediction. Some models can give you
poor estimates of the class probabilities and some even do not support
probability prediction (e.g., some instances of
<a class="reference internal" href="generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier" title="sklearn.linear_model.SGDClassifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">SGDClassifier</span></code></a>).
The calibration module allows you to better calibrate
the probabilities of a given model, or to add support for probability
prediction.</p>
<p>Well calibrated classifiers are probabilistic classifiers for which the output
of the <a class="reference internal" href="../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a> method can be directly interpreted as a confidence
level.
For instance, a well calibrated (binary) classifier should classify the samples such
that among the samples to which it gave a <a class="reference internal" href="../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a> value close to, say,
0.8, approximately 80% actually belong to the positive class.</p>
<p>Before we show how to re-calibrate a classifier, we first need a way to detect how
good a classifier is calibrated.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>Strictly proper scoring rules for probabilistic predictions like
<a class="reference internal" href="generated/sklearn.metrics.brier_score_loss.html#sklearn.metrics.brier_score_loss" title="sklearn.metrics.brier_score_loss"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.metrics.brier_score_loss</span></code></a> and
<a class="reference internal" href="generated/sklearn.metrics.log_loss.html#sklearn.metrics.log_loss" title="sklearn.metrics.log_loss"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.metrics.log_loss</span></code></a> assess calibration (reliability) and
discriminative power (resolution) of a model, as well as the randomness of the data
(uncertainty) at the same time. This follows from the well-known Brier score
decomposition of Murphy <a class="footnote-reference brackets" href="#id12" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a>. As it is not clear which term dominates, the score is
of limited use for assessing calibration alone (unless one computes each term of
the decomposition). A lower Brier loss, for instance, does not necessarily
mean a better calibrated model, it could also mean a worse calibrated model with much
more discriminatory power, e.g. using many more features.</p>
</div>
<section id="calibration-curves">
<span id="calibration-curve"></span><h2><span class="section-number">1.16.1. </span>Calibration curves<a class="headerlink" href="#calibration-curves" title="Link to this heading">#</a></h2>
<p>Calibration curves, also referred to as <em>reliability diagrams</em> (Wilks 1995 <a class="footnote-reference brackets" href="#id13" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a>),
compare how well the probabilistic predictions of a binary classifier are calibrated.
It plots the frequency of the positive label (to be more precise, an estimation of the
<em>conditional event probability</em> <span class="math notranslate nohighlight">\(P(Y=1|\text{predict_proba})\)</span>) on the y-axis
against the predicted probability <a class="reference internal" href="../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a> of a model on the x-axis.
The tricky part is to get values for the y-axis.
In scikit-learn, this is accomplished by binning the predictions such that the x-axis
represents the average predicted probability in each bin.
The y-axis is then the <em>fraction of positives</em> given the predictions of that bin, i.e.
the proportion of samples whose class is the positive class (in each bin).</p>
<p>The top calibration curve plot is created with
<a class="reference internal" href="generated/sklearn.calibration.CalibrationDisplay.html#sklearn.calibration.CalibrationDisplay.from_estimator" title="sklearn.calibration.CalibrationDisplay.from_estimator"><code class="xref py py-func docutils literal notranslate"><span class="pre">CalibrationDisplay.from_estimator</span></code></a>, which uses <a class="reference internal" href="generated/sklearn.calibration.calibration_curve.html#sklearn.calibration.calibration_curve" title="sklearn.calibration.calibration_curve"><code class="xref py py-func docutils literal notranslate"><span class="pre">calibration_curve</span></code></a> to
calculate the per bin average predicted probabilities and fraction of positives.
<a class="reference internal" href="generated/sklearn.calibration.CalibrationDisplay.html#sklearn.calibration.CalibrationDisplay.from_estimator" title="sklearn.calibration.CalibrationDisplay.from_estimator"><code class="xref py py-func docutils literal notranslate"><span class="pre">CalibrationDisplay.from_estimator</span></code></a>
takes as input a fitted classifier, which is used to calculate the predicted
probabilities. The classifier thus must have <a class="reference internal" href="../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a> method. For
the few classifiers that do not have a <a class="reference internal" href="../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a> method, it is
possible to use <a class="reference internal" href="generated/sklearn.calibration.CalibratedClassifierCV.html#sklearn.calibration.CalibratedClassifierCV" title="sklearn.calibration.CalibratedClassifierCV"><code class="xref py py-class docutils literal notranslate"><span class="pre">CalibratedClassifierCV</span></code></a> to calibrate the classifier
outputs to probabilities.</p>
<p>The bottom histogram gives some insight into the behavior of each classifier
by showing the number of samples in each predicted probability bin.</p>
<figure class="align-center">
<a class="reference external image-reference" href="../auto_examples/calibration/plot_compare_calibration.html"><img alt="../_images/sphx_glr_plot_compare_calibration_001.png" src="../_images/sphx_glr_plot_compare_calibration_001.png" />
</a>
</figure>
<p><a class="reference internal" href="generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression" title="sklearn.linear_model.LogisticRegression"><code class="xref py py-class docutils literal notranslate"><span class="pre">LogisticRegression</span></code></a> is more likely to return well calibrated predictions by itself as it has a
canonical link function for its loss, i.e. the logit-link for the <a class="reference internal" href="model_evaluation.html#log-loss"><span class="std std-ref">Log loss</span></a>.
In the unpenalized case, this leads to the so-called <strong>balance property</strong>, see <a class="footnote-reference brackets" href="#id19" id="id3" role="doc-noteref"><span class="fn-bracket">[</span>8<span class="fn-bracket">]</span></a> and <a class="reference internal" href="linear_model.html#logistic-regression"><span class="std std-ref">Logistic regression</span></a>.
In the plot above, data is generated according to a linear mechanism, which is
consistent with the <a class="reference internal" href="generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression" title="sklearn.linear_model.LogisticRegression"><code class="xref py py-class docutils literal notranslate"><span class="pre">LogisticRegression</span></code></a> model (the model is ‘well specified’),
and the value of the regularization parameter <code class="docutils literal notranslate"><span class="pre">C</span></code> is tuned to be
appropriate (neither too strong nor too low). As a consequence, this model returns
accurate predictions from its <code class="docutils literal notranslate"><span class="pre">predict_proba</span></code> method.
In contrast to that, the other shown models return biased probabilities; with
different biases per model.</p>
<p><a class="reference internal" href="generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB" title="sklearn.naive_bayes.GaussianNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">GaussianNB</span></code></a> (Naive Bayes) tends to push probabilities to 0 or 1 (note the counts
in the histograms). This is mainly because it makes the assumption that
features are conditionally independent given the class, which is not the
case in this dataset which contains 2 redundant features.</p>
<p><a class="reference internal" href="generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier" title="sklearn.ensemble.RandomForestClassifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">RandomForestClassifier</span></code></a> shows the opposite behavior: the histograms
show peaks at probabilities approximately 0.2 and 0.9, while probabilities
close to 0 or 1 are very rare. An explanation for this is given by
Niculescu-Mizil and Caruana <a class="footnote-reference brackets" href="#id14" id="id4" role="doc-noteref"><span class="fn-bracket">[</span>3<span class="fn-bracket">]</span></a>: “Methods such as bagging and random
forests that average predictions from a base set of models can have
difficulty making predictions near 0 and 1 because variance in the
underlying base models will bias predictions that should be near zero or one
away from these values. Because predictions are restricted to the interval
[0,1], errors caused by variance tend to be one-sided near zero and one. For
example, if a model should predict p = 0 for a case, the only way bagging
can achieve this is if all bagged trees predict zero. If we add noise to the
trees that bagging is averaging over, this noise will cause some trees to
predict values larger than 0 for this case, thus moving the average
prediction of the bagged ensemble away from 0. We observe this effect most
strongly with random forests because the base-level trees trained with
random forests have relatively high variance due to feature subsetting.” As
a result, the calibration curve shows a characteristic sigmoid shape, indicating that
the classifier could trust its “intuition” more and return probabilities closer
to 0 or 1 typically.</p>
<p><a class="reference internal" href="generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC" title="sklearn.svm.LinearSVC"><code class="xref py py-class docutils literal notranslate"><span class="pre">LinearSVC</span></code></a> (SVC) shows an even more sigmoid curve than the random forest, which
is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana <a class="footnote-reference brackets" href="#id14" id="id5" role="doc-noteref"><span class="fn-bracket">[</span>3<span class="fn-bracket">]</span></a>), which
focus on difficult to classify samples that are close to the decision boundary (the
support vectors).</p>
</section>
<section id="calibrating-a-classifier">
<h2><span class="section-number">1.16.2. </span>Calibrating a classifier<a class="headerlink" href="#calibrating-a-classifier" title="Link to this heading">#</a></h2>
<p>Calibrating a classifier consists of fitting a regressor (called a
<em>calibrator</em>) that maps the output of the classifier (as given by
<a class="reference internal" href="../glossary.html#term-decision_function"><span class="xref std std-term">decision_function</span></a> or <a class="reference internal" href="../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a>) to a calibrated probability
in [0, 1]. Denoting the output of the classifier for a given sample by <span class="math notranslate nohighlight">\(f_i\)</span>,
the calibrator tries to predict the conditional event probability
<span class="math notranslate nohighlight">\(P(y_i = 1 | f_i)\)</span>.</p>
<p>Ideally, the calibrator is fit on a dataset independent of the training data used to
fit the classifier in the first place.
This is because performance of the classifier on its training data would be
better than for novel data. Using the classifier output of training data
to fit the calibrator would thus result in a biased calibrator that maps to
probabilities closer to 0 and 1 than it should.</p>
</section>
<section id="usage">
<h2><span class="section-number">1.16.3. </span>Usage<a class="headerlink" href="#usage" title="Link to this heading">#</a></h2>
<p>The <a class="reference internal" href="generated/sklearn.calibration.CalibratedClassifierCV.html#sklearn.calibration.CalibratedClassifierCV" title="sklearn.calibration.CalibratedClassifierCV"><code class="xref py py-class docutils literal notranslate"><span class="pre">CalibratedClassifierCV</span></code></a> class is used to calibrate a classifier.</p>
<p><a class="reference internal" href="generated/sklearn.calibration.CalibratedClassifierCV.html#sklearn.calibration.CalibratedClassifierCV" title="sklearn.calibration.CalibratedClassifierCV"><code class="xref py py-class docutils literal notranslate"><span class="pre">CalibratedClassifierCV</span></code></a> uses a cross-validation approach to ensure
unbiased data is always used to fit the calibrator. The data is split into k
<code class="docutils literal notranslate"><span class="pre">(train_set,</span> <span class="pre">test_set)</span></code> couples (as determined by <code class="docutils literal notranslate"><span class="pre">cv</span></code>). When <code class="docutils literal notranslate"><span class="pre">ensemble=True</span></code>
(default), the following procedure is repeated independently for each
cross-validation split:</p>
<ol class="arabic simple">
<li><p>a clone of <code class="docutils literal notranslate"><span class="pre">base_estimator</span></code> is trained on the train subset</p></li>
<li><p>the trained <code class="docutils literal notranslate"><span class="pre">base_estimator</span></code> makes predictions on the test subset</p></li>
<li><p>the predictions are used to fit a calibrator (either a sigmoid or isotonic
regressor) (when the data is multiclass, a calibrator is fit for every class)</p></li>
</ol>
<p>This results in an
ensemble of k <code class="docutils literal notranslate"><span class="pre">(classifier,</span> <span class="pre">calibrator)</span></code> couples where each calibrator maps
the output of its corresponding classifier into [0, 1]. Each couple is exposed
in the <code class="docutils literal notranslate"><span class="pre">calibrated_classifiers_</span></code> attribute, where each entry is a calibrated
classifier with a <a class="reference internal" href="../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a> method that outputs calibrated
probabilities. The output of <a class="reference internal" href="../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a> for the main
<a class="reference internal" href="generated/sklearn.calibration.CalibratedClassifierCV.html#sklearn.calibration.CalibratedClassifierCV" title="sklearn.calibration.CalibratedClassifierCV"><code class="xref py py-class docutils literal notranslate"><span class="pre">CalibratedClassifierCV</span></code></a> instance corresponds to the average of the
predicted probabilities of the <code class="docutils literal notranslate"><span class="pre">k</span></code> estimators in the <code class="docutils literal notranslate"><span class="pre">calibrated_classifiers_</span></code>
list. The output of <a class="reference internal" href="../glossary.html#term-predict"><span class="xref std std-term">predict</span></a> is the class that has the highest
probability.</p>
<p>It is important to choose <code class="docutils literal notranslate"><span class="pre">cv</span></code> carefully when using <code class="docutils literal notranslate"><span class="pre">ensemble=True</span></code>.
All classes should be present in both train and test subsets for every split.
When a class is absent in the train subset, the predicted probability for that
class will default to 0 for the <code class="docutils literal notranslate"><span class="pre">(classifier,</span> <span class="pre">calibrator)</span></code> couple of that split.
This skews the <a class="reference internal" href="../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a> as it averages across all couples.
When a class is absent in the test subset, the calibrator for that class
(within the <code class="docutils literal notranslate"><span class="pre">(classifier,</span> <span class="pre">calibrator)</span></code> couple of that split) is
fit on data with no positive class. This results in ineffective calibration.</p>
<p>When <code class="docutils literal notranslate"><span class="pre">ensemble=False</span></code>, cross-validation is used to obtain ‘unbiased’
predictions for all the data, via
<a class="reference internal" href="generated/sklearn.model_selection.cross_val_predict.html#sklearn.model_selection.cross_val_predict" title="sklearn.model_selection.cross_val_predict"><code class="xref py py-func docutils literal notranslate"><span class="pre">cross_val_predict</span></code></a>.
These unbiased predictions are then used to train the calibrator. The attribute
<code class="docutils literal notranslate"><span class="pre">calibrated_classifiers_</span></code> consists of only one <code class="docutils literal notranslate"><span class="pre">(classifier,</span> <span class="pre">calibrator)</span></code>
couple where the classifier is the <code class="docutils literal notranslate"><span class="pre">base_estimator</span></code> trained on all the data.
In this case the output of <a class="reference internal" href="../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a> for
<a class="reference internal" href="generated/sklearn.calibration.CalibratedClassifierCV.html#sklearn.calibration.CalibratedClassifierCV" title="sklearn.calibration.CalibratedClassifierCV"><code class="xref py py-class docutils literal notranslate"><span class="pre">CalibratedClassifierCV</span></code></a> is the predicted probabilities obtained
from the single <code class="docutils literal notranslate"><span class="pre">(classifier,</span> <span class="pre">calibrator)</span></code> couple.</p>
<p>The main advantage of <code class="docutils literal notranslate"><span class="pre">ensemble=True</span></code> is to benefit from the traditional
ensembling effect (similar to <a class="reference internal" href="ensemble.html#bagging"><span class="std std-ref">Bagging meta-estimator</span></a>). The resulting ensemble should
both be well calibrated and slightly more accurate than with <code class="docutils literal notranslate"><span class="pre">ensemble=False</span></code>.
The main advantage of using <code class="docutils literal notranslate"><span class="pre">ensemble=False</span></code> is computational: it reduces the
overall fit time by training only a single base classifier and calibrator
pair, decreases the final model size and increases prediction speed.</p>
<p>Alternatively an already fitted classifier can be calibrated by using a
<a class="reference internal" href="generated/sklearn.frozen.FrozenEstimator.html#sklearn.frozen.FrozenEstimator" title="sklearn.frozen.FrozenEstimator"><code class="xref py py-class docutils literal notranslate"><span class="pre">FrozenEstimator</span></code></a> as
<code class="docutils literal notranslate"><span class="pre">CalibratedClassifierCV(estimator=FrozenEstimator(estimator))</span></code>.
It is up to the user to make sure that the data used for fitting the classifier
is disjoint from the data used for fitting the regressor.</p>
<p><a class="reference internal" href="generated/sklearn.calibration.CalibratedClassifierCV.html#sklearn.calibration.CalibratedClassifierCV" title="sklearn.calibration.CalibratedClassifierCV"><code class="xref py py-class docutils literal notranslate"><span class="pre">CalibratedClassifierCV</span></code></a> supports the use of two regression techniques
for calibration via the <code class="docutils literal notranslate"><span class="pre">method</span></code> parameter: <code class="docutils literal notranslate"><span class="pre">"sigmoid"</span></code> and <code class="docutils literal notranslate"><span class="pre">"isotonic"</span></code>.</p>
<section id="sigmoid">
<span id="sigmoid-regressor"></span><h3><span class="section-number">1.16.3.1. </span>Sigmoid<a class="headerlink" href="#sigmoid" title="Link to this heading">#</a></h3>
<p>The sigmoid regressor, <code class="docutils literal notranslate"><span class="pre">method="sigmoid"</span></code> is based on Platt’s logistic model <a class="footnote-reference brackets" href="#id15" id="id6" role="doc-noteref"><span class="fn-bracket">[</span>4<span class="fn-bracket">]</span></a>:</p>
<div class="math notranslate nohighlight">
\[p(y_i = 1 | f_i) = \frac{1}{1 + \exp(A f_i + B)} \,,\]</div>
<p>where <span class="math notranslate nohighlight">\(y_i\)</span> is the true label of sample <span class="math notranslate nohighlight">\(i\)</span> and <span class="math notranslate nohighlight">\(f_i\)</span>
is the output of the un-calibrated classifier for sample <span class="math notranslate nohighlight">\(i\)</span>. <span class="math notranslate nohighlight">\(A\)</span>
and <span class="math notranslate nohighlight">\(B\)</span> are real numbers to be determined when fitting the regressor via
maximum likelihood.</p>
<p>The sigmoid method assumes the <a class="reference internal" href="#calibration-curve"><span class="std std-ref">calibration curve</span></a>
can be corrected by applying a sigmoid function to the raw predictions. This
assumption has been empirically justified in the case of <a class="reference internal" href="svm.html#svm"><span class="std std-ref">Support Vector Machines</span></a> with
common kernel functions on various benchmark datasets in section 2.1 of Platt
1999 <a class="footnote-reference brackets" href="#id15" id="id7" role="doc-noteref"><span class="fn-bracket">[</span>4<span class="fn-bracket">]</span></a> but does not necessarily hold in general. Additionally, the
logistic model works best if the calibration error is symmetrical, meaning
the classifier output for each binary class is normally distributed with
the same variance <a class="footnote-reference brackets" href="#id18" id="id8" role="doc-noteref"><span class="fn-bracket">[</span>7<span class="fn-bracket">]</span></a>. This can be a problem for highly imbalanced
classification problems, where outputs do not have equal variance.</p>
<p>In general this method is most effective for small sample sizes or when the
un-calibrated model is under-confident and has similar calibration errors for both
high and low outputs.</p>
</section>
<section id="isotonic">
<h3><span class="section-number">1.16.3.2. </span>Isotonic<a class="headerlink" href="#isotonic" title="Link to this heading">#</a></h3>
<p>The <code class="docutils literal notranslate"><span class="pre">method="isotonic"</span></code> fits a non-parametric isotonic regressor, which outputs
a step-wise non-decreasing function, see <a class="reference internal" href="../api/sklearn.isotonic.html#module-sklearn.isotonic" title="sklearn.isotonic"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.isotonic</span></code></a>. It minimizes:</p>
<div class="math notranslate nohighlight">
\[\sum_{i=1}^{n} (y_i - \hat{f}_i)^2\]</div>
<p>subject to <span class="math notranslate nohighlight">\(\hat{f}_i \geq \hat{f}_j\)</span> whenever
<span class="math notranslate nohighlight">\(f_i \geq f_j\)</span>. <span class="math notranslate nohighlight">\(y_i\)</span> is the true
label of sample <span class="math notranslate nohighlight">\(i\)</span> and <span class="math notranslate nohighlight">\(\hat{f}_i\)</span> is the output of the
calibrated classifier for sample <span class="math notranslate nohighlight">\(i\)</span> (i.e., the calibrated probability).
This method is more general when compared to ‘sigmoid’ as the only restriction
is that the mapping function is monotonically increasing. It is thus more
powerful as it can correct any monotonic distortion of the un-calibrated model.
However, it is more prone to overfitting, especially on small datasets <a class="footnote-reference brackets" href="#id17" id="id9" role="doc-noteref"><span class="fn-bracket">[</span>6<span class="fn-bracket">]</span></a>.</p>
<p>Overall, ‘isotonic’ will perform as well as or better than ‘sigmoid’ when
there is enough data (greater than ~ 1000 samples) to avoid overfitting <a class="footnote-reference brackets" href="#id14" id="id10" role="doc-noteref"><span class="fn-bracket">[</span>3<span class="fn-bracket">]</span></a>.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>Impact on ranking metrics like AUC</p>
<p>It is generally expected that calibration does not affect ranking metrics such as
ROC-AUC. However, these metrics might differ after calibration when using
<code class="docutils literal notranslate"><span class="pre">method="isotonic"</span></code> since isotonic regression introduces ties in the predicted
probabilities. This can be seen as within the uncertainty of the model predictions.
In case, you strictly want to keep the ranking and thus AUC scores, use
<code class="docutils literal notranslate"><span class="pre">method="sigmoid"</span></code> which is a strictly monotonic transformation and thus keeps
the ranking.</p>
</div>
</section>
<section id="multiclass-support">
<h3><span class="section-number">1.16.3.3. </span>Multiclass support<a class="headerlink" href="#multiclass-support" title="Link to this heading">#</a></h3>
<p>Both isotonic and sigmoid regressors only
support 1-dimensional data (e.g., binary classification output) but are
extended for multiclass classification if the <code class="docutils literal notranslate"><span class="pre">base_estimator</span></code> supports
multiclass predictions. For multiclass predictions,
<a class="reference internal" href="generated/sklearn.calibration.CalibratedClassifierCV.html#sklearn.calibration.CalibratedClassifierCV" title="sklearn.calibration.CalibratedClassifierCV"><code class="xref py py-class docutils literal notranslate"><span class="pre">CalibratedClassifierCV</span></code></a> calibrates for
each class separately in a <a class="reference internal" href="multiclass.html#ovr-classification"><span class="std std-ref">OneVsRestClassifier</span></a> fashion <a class="footnote-reference brackets" href="#id16" id="id11" role="doc-noteref"><span class="fn-bracket">[</span>5<span class="fn-bracket">]</span></a>. When
predicting
probabilities, the calibrated probabilities for each class
are predicted separately. As those probabilities do not necessarily sum to
one, a postprocessing is performed to normalize them.</p>
<p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/calibration/plot_calibration_curve.html#sphx-glr-auto-examples-calibration-plot-calibration-curve-py"><span class="std std-ref">Probability Calibration curves</span></a></p></li>
<li><p><a class="reference internal" href="../auto_examples/calibration/plot_calibration_multiclass.html#sphx-glr-auto-examples-calibration-plot-calibration-multiclass-py"><span class="std std-ref">Probability Calibration for 3-class classification</span></a></p></li>
<li><p><a class="reference internal" href="../auto_examples/calibration/plot_calibration.html#sphx-glr-auto-examples-calibration-plot-calibration-py"><span class="std std-ref">Probability calibration of classifiers</span></a></p></li>
<li><p><a class="reference internal" href="../auto_examples/calibration/plot_compare_calibration.html#sphx-glr-auto-examples-calibration-plot-compare-calibration-py"><span class="std std-ref">Comparison of Calibration of Classifiers</span></a></p></li>
</ul>
<p class="rubric">References</p>
<aside class="footnote-list brackets">
<aside class="footnote brackets" id="id12" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">1</a><span class="fn-bracket">]</span></span>
<p>Allan H. Murphy (1973).
<a class="reference external" href="https://doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2">“A New Vector Partition of the Probability Score”</a>
Journal of Applied Meteorology and Climatology</p>
</aside>
<aside class="footnote brackets" id="id13" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">2</a><span class="fn-bracket">]</span></span>
<p><a class="reference external" href="https://doi.org/10.1175/1520-0434(1990)005%3C0640:OTCOFP%3E2.0.CO;2">On the combination of forecast probabilities for
consecutive precipitation periods.</a>
Wea. Forecasting, 5, 640–650., Wilks, D. S., 1990a</p>
</aside>
<aside class="footnote brackets" id="id14" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span>3<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id4">1</a>,<a role="doc-backlink" href="#id5">2</a>,<a role="doc-backlink" href="#id10">3</a>)</span>
<p><a class="reference external" href="https://www.cs.cornell.edu/~alexn/papers/calibration.icml05.crc.rev3.pdf">Predicting Good Probabilities with Supervised Learning</a>,
A. Niculescu-Mizil & R. Caruana, ICML 2005</p>
</aside>
<aside class="footnote brackets" id="id15" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span>4<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id6">1</a>,<a role="doc-backlink" href="#id7">2</a>)</span>
<p><a class="reference external" href="https://www.cs.colorado.edu/~mozer/Teaching/syllabi/6622/papers/Platt1999.pdf">Probabilistic Outputs for Support Vector Machines and Comparisons
to Regularized Likelihood Methods.</a>
J. Platt, (1999)</p>
</aside>
<aside class="footnote brackets" id="id16" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id11">5</a><span class="fn-bracket">]</span></span>
<p><a class="reference external" href="https://dl.acm.org/doi/pdf/10.1145/775047.775151">Transforming Classifier Scores into Accurate Multiclass
Probability Estimates.</a>
B. Zadrozny & C. Elkan, (KDD 2002)</p>
</aside>
<aside class="footnote brackets" id="id17" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id9">6</a><span class="fn-bracket">]</span></span>
<p><a class="reference external" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180410/">Predicting accurate probabilities with a ranking loss.</a>
Menon AK, Jiang XJ, Vembu S, Elkan C, Ohno-Machado L.
Proc Int Conf Mach Learn. 2012;2012:703-710</p>
</aside>
<aside class="footnote brackets" id="id18" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id8">7</a><span class="fn-bracket">]</span></span>
<p><a class="reference external" href="https://projecteuclid.org/euclid.ejs/1513306867">Beyond sigmoids: How to obtain well-calibrated probabilities from
binary classifiers with beta calibration</a>
Kull, M., Silva Filho, T. M., & Flach, P. (2017).</p>
</aside>
<aside class="footnote brackets" id="id19" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id3">8</a><span class="fn-bracket">]</span></span>
<p>Mario V. Wüthrich, Michael Merz (2023).
<a class="reference external" href="https://doi.org/10.1007/978-3-031-12409-9">“Statistical Foundations of Actuarial Learning and its Applications”</a>
Springer Actuarial</p>
</aside>
</aside>
</section>
</section>
</section>
</article>
<footer class="bd-footer-article">
<div class="footer-article-items footer-article__inner">
<div class="footer-article-item">
<div class="prev-next-area">
<a class="left-prev"
href="isotonic.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title"><span class="section-number">1.15. </span>Isotonic regression</p>