-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrnn_dbscan_simple.py
85 lines (69 loc) · 2.53 KB
/
rnn_dbscan_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""
===================================
Demo of RNN-DBSCAN clustering algorithm
===================================
Finds core samples of high density and expands clusters from them.
Mostly copypasted from sklearn's DBSCAN example.
"""
import numpy as np
from sklearn import metrics
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler
from sklearn_ann.cluster.rnn_dbscan import RnnDBSCAN
# #############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(
n_samples=750, centers=centers, cluster_std=0.4, random_state=0
)
X = StandardScaler().fit_transform(X)
# #############################################################################
# Compute DBSCAN
db = RnnDBSCAN(n_neighbors=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print(f"""\
Estimated number of clusters: {n_clusters_}
Estimated number of noise points: {n_noise_}
Homogeneity: {metrics.homogeneity_score(labels_true, labels):0.3f}
Completeness: {metrics.completeness_score(labels_true, labels):0.3f}
V-measure: {metrics.v_measure_score(labels_true, labels):0.3f}
Adjusted Rand Index: {metrics.adjusted_rand_score(labels_true, labels):0.3f}
Adjusted Mutual Info: {metrics.adjusted_mutual_info_score(labels_true, labels):0.3f}
Silhouette Coefficient: {metrics.silhouette_score(X, labels):0.3f}\
""")
# #############################################################################
# Plot result
import matplotlib.pyplot as plt
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = labels == k
xy = X[class_member_mask & core_samples_mask]
plt.plot(
xy[:, 0],
xy[:, 1],
"o",
markerfacecolor=tuple(col),
markeredgecolor="k",
markersize=14,
)
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(
xy[:, 0],
xy[:, 1],
"o",
markerfacecolor=tuple(col),
markeredgecolor="k",
markersize=6,
)
plt.title(f"Estimated number of clusters: {n_clusters_}")
plt.show()