-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathplot_comparison_over_sampling.py
350 lines (273 loc) · 10.7 KB
/
plot_comparison_over_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
"""
==============================
Compare over-sampling samplers
==============================
The following example attends to make a qualitative comparison between the
different over-sampling algorithms available in the imbalanced-learn package.
"""
# Authors: Guillaume Lemaitre <[email protected]>
# License: MIT
# %%
print(__doc__)
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_context("poster")
# %% [markdown]
# The following function will be used to create toy dataset. It uses the
# :func:`~sklearn.datasets.make_classification` from scikit-learn but fixing
# some parameters.
# %%
from sklearn.datasets import make_classification
def create_dataset(
n_samples=1000,
weights=(0.01, 0.01, 0.98),
n_classes=3,
class_sep=0.8,
n_clusters=1,
):
return make_classification(
n_samples=n_samples,
n_features=2,
n_informative=2,
n_redundant=0,
n_repeated=0,
n_classes=n_classes,
n_clusters_per_class=n_clusters,
weights=list(weights),
class_sep=class_sep,
random_state=0,
)
# %% [markdown]
# The following function will be used to plot the sample space after resampling
# to illustrate the specificities of an algorithm.
# %%
def plot_resampling(X, y, sampler, ax, title=None):
X_res, y_res = sampler.fit_resample(X, y)
ax.scatter(X_res[:, 0], X_res[:, 1], c=y_res, alpha=0.8, edgecolor="k")
if title is None:
title = f"Resampling with {sampler.__class__.__name__}"
ax.set_title(title)
sns.despine(ax=ax, offset=10)
# %% [markdown]
# The following function will be used to plot the decision function of a
# classifier given some data.
# %%
import numpy as np
def plot_decision_function(X, y, clf, ax, title=None):
plot_step = 0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(
np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)
)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, alpha=0.4)
ax.scatter(X[:, 0], X[:, 1], alpha=0.8, c=y, edgecolor="k")
if title is not None:
ax.set_title(title)
# %% [markdown]
# Illustration of the influence of the balancing ratio
# ----------------------------------------------------
#
# We will first illustrate the influence of the balancing ratio on some toy
# data using a logistic regression classifier which is a linear model.
# %%
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
# %% [markdown]
# We will fit and show the decision boundary model to illustrate the impact of
# dealing with imbalanced classes.
# %%
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(15, 12))
weights_arr = (
(0.01, 0.01, 0.98),
(0.01, 0.05, 0.94),
(0.2, 0.1, 0.7),
(0.33, 0.33, 0.33),
)
for ax, weights in zip(axs.ravel(), weights_arr):
X, y = create_dataset(n_samples=300, weights=weights)
clf.fit(X, y)
plot_decision_function(X, y, clf, ax, title=f"weight={weights}")
fig.suptitle(f"Decision function of {clf.__class__.__name__}")
fig.tight_layout()
# %% [markdown]
# Greater is the difference between the number of samples in each class, poorer
# are the classification results.
#
# Random over-sampling to balance the data set
# --------------------------------------------
#
# Random over-sampling can be used to repeat some samples and balance the
# number of samples between the dataset. It can be seen that with this trivial
# approach the boundary decision is already less biased toward the majority
# class. The class :class:`~imblearn.over_sampling.RandomOverSampler`
# implements such of a strategy.
from imblearn.over_sampling import RandomOverSampler
# %%
from imblearn.pipeline import make_pipeline
X, y = create_dataset(n_samples=100, weights=(0.05, 0.25, 0.7))
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(15, 7))
clf.fit(X, y)
plot_decision_function(X, y, clf, axs[0], title="Without resampling")
sampler = RandomOverSampler(random_state=0)
model = make_pipeline(sampler, clf).fit(X, y)
plot_decision_function(X, y, model, axs[1], f"Using {model[0].__class__.__name__}")
fig.suptitle(f"Decision function of {clf.__class__.__name__}")
fig.tight_layout()
# %% [markdown]
# By default, random over-sampling generates a bootstrap. The parameter
# `shrinkage` allows adding a small perturbation to the generated data
# to generate a smoothed bootstrap instead. The plot below shows the difference
# between the two data generation strategies.
# %%
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(15, 7))
sampler.set_params(shrinkage=None)
plot_resampling(X, y, sampler, ax=axs[0], title="Normal bootstrap")
sampler.set_params(shrinkage=0.3)
plot_resampling(X, y, sampler, ax=axs[1], title="Smoothed bootstrap")
fig.suptitle(f"Resampling with {sampler.__class__.__name__}")
fig.tight_layout()
# %% [markdown]
# It looks like more samples are generated with smoothed bootstrap. This is due
# to the fact that the samples generated are not superimposing with the
# original samples.
#
# More advanced over-sampling using ADASYN and SMOTE
# --------------------------------------------------
#
# Instead of repeating the same samples when over-sampling or perturbating the
# generated bootstrap samples, one can use some specific heuristic instead.
# :class:`~imblearn.over_sampling.ADASYN` and
# :class:`~imblearn.over_sampling.SMOTE` can be used in this case.
# %%
from imblearn import FunctionSampler # to use a idendity sampler
from imblearn.over_sampling import ADASYN, SMOTE
X, y = create_dataset(n_samples=150, weights=(0.1, 0.2, 0.7))
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(15, 15))
samplers = [
FunctionSampler(),
RandomOverSampler(random_state=0),
SMOTE(random_state=0),
ADASYN(random_state=0),
]
for ax, sampler in zip(axs.ravel(), samplers):
title = "Original dataset" if isinstance(sampler, FunctionSampler) else None
plot_resampling(X, y, sampler, ax, title=title)
fig.tight_layout()
# %% [markdown]
# The following plot illustrates the difference between
# :class:`~imblearn.over_sampling.ADASYN` and
# :class:`~imblearn.over_sampling.SMOTE`.
# :class:`~imblearn.over_sampling.ADASYN` will focus on the samples which are
# difficult to classify with a nearest-neighbors rule while regular
# :class:`~imblearn.over_sampling.SMOTE` will not make any distinction.
# Therefore, the decision function depending of the algorithm.
X, y = create_dataset(n_samples=150, weights=(0.05, 0.25, 0.7))
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(20, 6))
models = {
"Without sampler": clf,
"ADASYN sampler": make_pipeline(ADASYN(random_state=0), clf),
"SMOTE sampler": make_pipeline(SMOTE(random_state=0), clf),
}
for ax, (title, model) in zip(axs, models.items()):
model.fit(X, y)
plot_decision_function(X, y, model, ax=ax, title=title)
fig.suptitle(f"Decision function using a {clf.__class__.__name__}")
fig.tight_layout()
# %% [markdown]
# Due to those sampling particularities, it can give rise to some specific
# issues as illustrated below.
# %%
X, y = create_dataset(n_samples=5000, weights=(0.01, 0.05, 0.94), class_sep=0.8)
samplers = [SMOTE(random_state=0), ADASYN(random_state=0)]
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(15, 15))
for ax, sampler in zip(axs, samplers):
model = make_pipeline(sampler, clf).fit(X, y)
plot_decision_function(
X, y, clf, ax[0], title=f"Decision function with {sampler.__class__.__name__}"
)
plot_resampling(X, y, sampler, ax[1])
fig.suptitle("Particularities of over-sampling with SMOTE and ADASYN")
fig.tight_layout()
# %% [markdown]
# SMOTE proposes several variants by identifying specific samples to consider
# during the resampling. The borderline version
# (:class:`~imblearn.over_sampling.BorderlineSMOTE`) will detect which point to
# select which are in the border between two classes. The SVM version
# (:class:`~imblearn.over_sampling.SVMSMOTE`) will use the support vectors
# found using an SVM algorithm to create new sample while the KMeans version
# (:class:`~imblearn.over_sampling.KMeansSMOTE`) will make a clustering before
# to generate samples in each cluster independently depending each cluster
# density.
# %%
from sklearn.cluster import MiniBatchKMeans
from imblearn.over_sampling import SVMSMOTE, BorderlineSMOTE, KMeansSMOTE
X, y = create_dataset(n_samples=5000, weights=(0.01, 0.05, 0.94), class_sep=0.8)
fig, axs = plt.subplots(5, 2, figsize=(15, 30))
samplers = [
SMOTE(random_state=0),
BorderlineSMOTE(random_state=0, kind="borderline-1"),
BorderlineSMOTE(random_state=0, kind="borderline-2"),
KMeansSMOTE(
kmeans_estimator=MiniBatchKMeans(n_clusters=10, n_init=1, random_state=0),
random_state=0,
),
SVMSMOTE(random_state=0),
]
for ax, sampler in zip(axs, samplers):
model = make_pipeline(sampler, clf).fit(X, y)
plot_decision_function(
X, y, clf, ax[0], title=f"Decision function for {sampler.__class__.__name__}"
)
plot_resampling(X, y, sampler, ax[1])
fig.suptitle("Decision function and resampling using SMOTE variants")
fig.tight_layout()
# %% [markdown]
# When dealing with a mixed of continuous and categorical features,
# :class:`~imblearn.over_sampling.SMOTENC` is the only method which can handle
# this case.
# %%
from collections import Counter
from imblearn.over_sampling import SMOTENC
rng = np.random.RandomState(42)
n_samples = 50
# Create a dataset of a mix of numerical and categorical data
X = np.empty((n_samples, 3), dtype=object)
X[:, 0] = rng.choice(["A", "B", "C"], size=n_samples).astype(object)
X[:, 1] = rng.randn(n_samples)
X[:, 2] = rng.randint(3, size=n_samples)
y = np.array([0] * 20 + [1] * 30)
print("The original imbalanced dataset")
print(sorted(Counter(y).items()))
print()
print("The first and last columns are containing categorical features:")
print(X[:5])
print()
smote_nc = SMOTENC(categorical_features=[0, 2], random_state=0)
X_resampled, y_resampled = smote_nc.fit_resample(X, y)
print("Dataset after resampling:")
print(sorted(Counter(y_resampled).items()))
print()
print("SMOTE-NC will generate categories for the categorical features:")
print(X_resampled[-5:])
print()
# %% [markdown]
# However, if the dataset is composed of only categorical features then one
# should use :class:`~imblearn.over_sampling.SMOTEN`.
# %%
from imblearn.over_sampling import SMOTEN
# Generate only categorical data
X = np.array(["A"] * 10 + ["B"] * 20 + ["C"] * 30, dtype=object).reshape(-1, 1)
y = np.array([0] * 20 + [1] * 40, dtype=np.int32)
print(f"Original class counts: {Counter(y)}")
print()
print(X[:5])
print()
sampler = SMOTEN(random_state=0)
X_res, y_res = sampler.fit_resample(X, y)
print(f"Class counts after resampling {Counter(y_res)}")
print()
print(X_res[-5:])
print()