forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex_object.py
150 lines (117 loc) · 5.25 KB
/
index_object.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from vbench.benchmark import Benchmark
from datetime import datetime
SECTION = "Index / MultiIndex objects"
common_setup = """from pandas_vb_common import *
"""
#----------------------------------------------------------------------
# intersection, union
setup = common_setup + """
rng = DatetimeIndex(start='1/1/2000', periods=10000, freq=datetools.Minute())
if rng.dtype == object:
rng = rng.view(Index)
else:
rng = rng.asobject
rng2 = rng[:-1]
"""
index_datetime_intersection = Benchmark("rng.intersection(rng2)", setup)
index_datetime_union = Benchmark("rng.union(rng2)", setup)
setup = common_setup + """
rng = date_range('1/1/2000', periods=10000, freq='T')
rng2 = rng[:-1]
"""
datetime_index_intersection = Benchmark("rng.intersection(rng2)", setup,
start_date=datetime(2013, 9, 27))
datetime_index_union = Benchmark("rng.union(rng2)", setup,
start_date=datetime(2013, 9, 27))
# integers
setup = common_setup + """
N = 1000000
options = np.arange(N)
left = Index(options.take(np.random.permutation(N)[:N // 2]))
right = Index(options.take(np.random.permutation(N)[:N // 2]))
"""
index_int64_union = Benchmark('left.union(right)', setup,
start_date=datetime(2011, 1, 1))
index_int64_intersection = Benchmark('left.intersection(right)', setup,
start_date=datetime(2011, 1, 1))
#----------------------------------------------------------------------
# string index slicing
setup = common_setup + """
idx = tm.makeStringIndex(1000000)
mask = np.arange(1000000) % 3 == 0
series_mask = Series(mask)
"""
index_str_slice_indexer_basic = Benchmark('idx[:-1]', setup)
index_str_slice_indexer_even = Benchmark('idx[::2]', setup)
index_str_boolean_indexer = Benchmark('idx[mask]', setup)
index_str_boolean_series_indexer = Benchmark('idx[series_mask]', setup)
#----------------------------------------------------------------------
# float64 index
#----------------------------------------------------------------------
# construction
setup = common_setup + """
baseidx = np.arange(1e6)
"""
index_float64_construct = Benchmark('Index(baseidx)', setup,
name='index_float64_construct',
start_date=datetime(2014, 4, 13))
setup = common_setup + """
idx = tm.makeFloatIndex(1000000)
mask = np.arange(idx.size) % 3 == 0
series_mask = Series(mask)
"""
#----------------------------------------------------------------------
# getting
index_float64_get = Benchmark('idx[1]', setup, name='index_float64_get',
start_date=datetime(2014, 4, 13))
#----------------------------------------------------------------------
# slicing
index_float64_slice_indexer_basic = Benchmark('idx[:-1]', setup,
name='index_float64_slice_indexer_basic',
start_date=datetime(2014, 4, 13))
index_float64_slice_indexer_even = Benchmark('idx[::2]', setup,
name='index_float64_slice_indexer_even',
start_date=datetime(2014, 4, 13))
index_float64_boolean_indexer = Benchmark('idx[mask]', setup,
name='index_float64_boolean_indexer',
start_date=datetime(2014, 4, 13))
index_float64_boolean_series_indexer = Benchmark('idx[series_mask]', setup,
name='index_float64_boolean_series_indexer',
start_date=datetime(2014, 4, 13))
#----------------------------------------------------------------------
# arith ops
index_float64_mul = Benchmark('idx * 2', setup, name='index_float64_mul',
start_date=datetime(2014, 4, 13))
index_float64_div = Benchmark('idx / 2', setup, name='index_float64_div',
start_date=datetime(2014, 4, 13))
# Constructing MultiIndex from cartesian product of iterables
#
setup = common_setup + """
iterables = [tm.makeStringIndex(10000), xrange(20)]
"""
multiindex_from_product = Benchmark('MultiIndex.from_product(iterables)',
setup, name='multiindex_from_product',
start_date=datetime(2014, 6, 30))
#----------------------------------------------------------------------
# MultiIndex with DatetimeIndex level
setup = common_setup + """
level1 = range(1000)
level2 = date_range(start='1/1/2012', periods=100)
mi = MultiIndex.from_product([level1, level2])
"""
multiindex_with_datetime_level_full = \
Benchmark("mi.copy().values", setup,
name='multiindex_with_datetime_level_full',
start_date=datetime(2014, 10, 11))
multiindex_with_datetime_level_sliced = \
Benchmark("mi[:10].values", setup,
name='multiindex_with_datetime_level_sliced',
start_date=datetime(2014, 10, 11))
#----------------------------------------------------------------------
# repr
setup = common_setup + """
dr = pd.date_range('20000101', freq='D', periods=100000)
"""
datetime_index_repr = \
Benchmark("dr._is_dates_only", setup,
start_date=datetime(2012, 1, 11))