|
50 | 50 | "cur = conn.cursor()"
|
51 | 51 | ]
|
52 | 52 | },
|
| 53 | + { |
| 54 | + "cell_type": "markdown", |
| 55 | + "metadata": {}, |
| 56 | + "source": [ |
| 57 | + "#### Querying the sqlite_master table for table names" |
| 58 | + ] |
| 59 | + }, |
53 | 60 | {
|
54 | 61 | "cell_type": "code",
|
55 |
| - "execution_count": 5, |
| 62 | + "execution_count": 4, |
56 | 63 | "metadata": {},
|
57 | 64 | "outputs": [
|
58 | 65 | {
|
|
70 | 77 | },
|
71 | 78 | {
|
72 | 79 | "cell_type": "code",
|
73 |
| - "execution_count": 6, |
| 80 | + "execution_count": 5, |
74 | 81 | "metadata": {},
|
75 | 82 | "outputs": [],
|
76 | 83 | "source": [
|
|
91 | 98 | },
|
92 | 99 | {
|
93 | 100 | "cell_type": "code",
|
94 |
| - "execution_count": 8, |
| 101 | + "execution_count": 6, |
95 | 102 | "metadata": {},
|
96 | 103 | "outputs": [],
|
97 | 104 | "source": [
|
|
101 | 108 | },
|
102 | 109 | {
|
103 | 110 | "cell_type": "code",
|
104 |
| - "execution_count": 9, |
| 111 | + "execution_count": 7, |
105 | 112 | "metadata": {},
|
106 | 113 | "outputs": [
|
107 | 114 | {
|
|
119 | 126 | },
|
120 | 127 | {
|
121 | 128 | "cell_type": "code",
|
122 |
| - "execution_count": 10, |
| 129 | + "execution_count": 8, |
123 | 130 | "metadata": {},
|
124 | 131 | "outputs": [
|
125 | 132 | {
|
|
138 | 145 | },
|
139 | 146 | {
|
140 | 147 | "cell_type": "code",
|
141 |
| - "execution_count": 11, |
| 148 | + "execution_count": 9, |
142 | 149 | "metadata": {},
|
143 | 150 | "outputs": [
|
144 | 151 | {
|
145 | 152 | "data": {
|
146 | 153 | "text/plain": [
|
147 |
| - "<sqlite3.Cursor at 0x7fe55c78aa40>" |
| 154 | + "<sqlite3.Cursor at 0x7fe1fa654180>" |
148 | 155 | ]
|
149 | 156 | },
|
150 |
| - "execution_count": 11, |
| 157 | + "execution_count": 9, |
151 | 158 | "metadata": {},
|
152 | 159 | "output_type": "execute_result"
|
153 | 160 | }
|
|
163 | 170 | },
|
164 | 171 | {
|
165 | 172 | "cell_type": "code",
|
166 |
| - "execution_count": 12, |
| 173 | + "execution_count": 10, |
167 | 174 | "metadata": {},
|
168 | 175 | "outputs": [
|
169 | 176 | {
|
|
182 | 189 | " print(row)"
|
183 | 190 | ]
|
184 | 191 | },
|
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": 11, |
| 195 | + "metadata": {}, |
| 196 | + "outputs": [], |
| 197 | + "source": [ |
| 198 | + "conn.commit()\n", |
| 199 | + "conn.close()" |
| 200 | + ] |
| 201 | + }, |
185 | 202 | {
|
186 | 203 | "cell_type": "markdown",
|
187 | 204 | "metadata": {},
|
|
191 | 208 | },
|
192 | 209 | {
|
193 | 210 | "cell_type": "code",
|
194 |
| - "execution_count": 13, |
| 211 | + "execution_count": 12, |
195 | 212 | "metadata": {},
|
196 | 213 | "outputs": [
|
197 | 214 | {
|
198 | 215 | "name": "stdout",
|
199 | 216 | "output_type": "stream",
|
200 | 217 | "text": [
|
201 |
| - " date trans symbol qty price\n", |
202 |
| - "0 2006-01-05 BUY RHAT 100.0 35.14\n" |
| 218 | + " date trans symbol qty price\n", |
| 219 | + "0 2006-01-05 BUY RHAT 100.0 35.14\n", |
| 220 | + "1 2006-03-28 BUY IBM 1000.0 45.00\n", |
| 221 | + "2 2006-04-06 SELL IBM 500.0 53.00\n", |
| 222 | + "3 2006-04-05 BUY MSFT 1000.0 72.00\n" |
203 | 223 | ]
|
204 | 224 | }
|
205 | 225 | ],
|
|
222 | 242 | },
|
223 | 243 | {
|
224 | 244 | "cell_type": "code",
|
225 |
| - "execution_count": 14, |
| 245 | + "execution_count": 13, |
226 | 246 | "metadata": {},
|
227 | 247 | "outputs": [],
|
228 | 248 | "source": [
|
|
235 | 255 | "source": [
|
236 | 256 | "### Accessing existing [Database](https://www.sqlitetutorial.net/sqlite-sample-database/):\n",
|
237 | 257 | "\n",
|
238 |
| - "" |
| 258 | + " \n", |
| 259 | + "[Source](https://www.sqlitetutorial.net/) " |
239 | 260 | ]
|
240 | 261 | },
|
241 | 262 | {
|
242 | 263 | "cell_type": "markdown",
|
243 | 264 | "metadata": {},
|
244 | 265 | "source": [
|
245 |
| - "! wget https://cdn.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip\n", |
246 |
| - "! unzip chinook.zip\n", |
247 |
| - "! mv chinook.zip ../SampleDBs/chinook.sqlite\n", |
248 |
| - "! rm chinook.zip" |
| 266 | + "#### Retrieving original database" |
| 267 | + ] |
| 268 | + }, |
| 269 | + { |
| 270 | + "cell_type": "markdown", |
| 271 | + "metadata": {}, |
| 272 | + "source": [ |
| 273 | + "! wget https://cdn.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip \n", |
| 274 | + "! unzip chinook.zip ../SampleDBs/chinook.sqlite \n", |
| 275 | + "! rm chinook.zip " |
249 | 276 | ]
|
250 | 277 | },
|
251 | 278 | {
|
252 | 279 | "cell_type": "code",
|
253 |
| - "execution_count": 15, |
| 280 | + "execution_count": 14, |
254 | 281 | "metadata": {},
|
255 | 282 | "outputs": [],
|
256 | 283 | "source": [
|
|
260 | 287 | },
|
261 | 288 | {
|
262 | 289 | "cell_type": "code",
|
263 |
| - "execution_count": 17, |
| 290 | + "execution_count": 15, |
264 | 291 | "metadata": {},
|
265 | 292 | "outputs": [
|
266 | 293 | {
|
|
293 | 320 | " print(c)"
|
294 | 321 | ]
|
295 | 322 | },
|
| 323 | + { |
| 324 | + "cell_type": "markdown", |
| 325 | + "metadata": {}, |
| 326 | + "source": [ |
| 327 | + "#### Querying the sqlite_master table to examine the table structure" |
| 328 | + ] |
| 329 | + }, |
296 | 330 | {
|
297 | 331 | "cell_type": "code",
|
298 |
| - "execution_count": 18, |
| 332 | + "execution_count": 17, |
299 | 333 | "metadata": {},
|
300 | 334 | "outputs": [
|
301 | 335 | {
|
|
327 | 361 | },
|
328 | 362 | {
|
329 | 363 | "cell_type": "code",
|
330 |
| - "execution_count": 19, |
| 364 | + "execution_count": 18, |
331 | 365 | "metadata": {},
|
332 | 366 | "outputs": [
|
333 | 367 | {
|
|
361 | 395 | },
|
362 | 396 | {
|
363 | 397 | "cell_type": "code",
|
364 |
| - "execution_count": 20, |
| 398 | + "execution_count": 19, |
365 | 399 | "metadata": {},
|
366 | 400 | "outputs": [
|
367 | 401 | {
|
|
395 | 429 | },
|
396 | 430 | {
|
397 | 431 | "cell_type": "code",
|
398 |
| - "execution_count": 22, |
| 432 | + "execution_count": 20, |
399 | 433 | "metadata": {},
|
400 | 434 | "outputs": [
|
401 | 435 | {
|
|
463 | 497 | },
|
464 | 498 | {
|
465 | 499 | "cell_type": "code",
|
466 |
| - "execution_count": 23, |
| 500 | + "execution_count": 22, |
467 | 501 | "metadata": {},
|
468 | 502 | "outputs": [
|
469 | 503 | {
|
|
492 | 526 | },
|
493 | 527 | {
|
494 | 528 | "cell_type": "code",
|
495 |
| - "execution_count": 24, |
| 529 | + "execution_count": 23, |
496 | 530 | "metadata": {},
|
497 | 531 | "outputs": [
|
498 | 532 | {
|
|
527 | 561 | },
|
528 | 562 | {
|
529 | 563 | "cell_type": "code",
|
530 |
| - "execution_count": 25, |
| 564 | + "execution_count": 24, |
531 | 565 | "metadata": {},
|
532 | 566 | "outputs": [
|
533 | 567 | {
|
|
561 | 595 | },
|
562 | 596 | {
|
563 | 597 | "cell_type": "code",
|
564 |
| - "execution_count": 26, |
| 598 | + "execution_count": 25, |
565 | 599 | "metadata": {},
|
566 | 600 | "outputs": [
|
567 | 601 | {
|
|
594 | 628 | },
|
595 | 629 | {
|
596 | 630 | "cell_type": "code",
|
597 |
| - "execution_count": 27, |
| 631 | + "execution_count": 26, |
598 | 632 | "metadata": {},
|
599 | 633 | "outputs": [
|
600 | 634 | {
|
|
629 | 663 | },
|
630 | 664 | {
|
631 | 665 | "cell_type": "code",
|
632 |
| - "execution_count": 28, |
| 666 | + "execution_count": 27, |
633 | 667 | "metadata": {},
|
634 | 668 | "outputs": [
|
635 | 669 | {
|
|
664 | 698 | },
|
665 | 699 | {
|
666 | 700 | "cell_type": "code",
|
667 |
| - "execution_count": 30, |
| 701 | + "execution_count": 28, |
668 | 702 | "metadata": {},
|
669 | 703 | "outputs": [
|
670 | 704 | {
|
|
734 | 768 | " print(c)"
|
735 | 769 | ]
|
736 | 770 | },
|
| 771 | + { |
| 772 | + "cell_type": "markdown", |
| 773 | + "metadata": {}, |
| 774 | + "source": [ |
| 775 | + "#### Same with Pandas" |
| 776 | + ] |
| 777 | + }, |
737 | 778 | {
|
738 | 779 | "cell_type": "code",
|
739 | 780 | "execution_count": 31,
|
740 | 781 | "metadata": {},
|
741 |
| - "outputs": [], |
| 782 | + "outputs": [ |
| 783 | + { |
| 784 | + "data": { |
| 785 | + "text/html": [ |
| 786 | + "<div>\n", |
| 787 | + "<style scoped>\n", |
| 788 | + " .dataframe tbody tr th:only-of-type {\n", |
| 789 | + " vertical-align: middle;\n", |
| 790 | + " }\n", |
| 791 | + "\n", |
| 792 | + " .dataframe tbody tr th {\n", |
| 793 | + " vertical-align: top;\n", |
| 794 | + " }\n", |
| 795 | + "\n", |
| 796 | + " .dataframe thead th {\n", |
| 797 | + " text-align: right;\n", |
| 798 | + " }\n", |
| 799 | + "</style>\n", |
| 800 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 801 | + " <thead>\n", |
| 802 | + " <tr style=\"text-align: right;\">\n", |
| 803 | + " <th></th>\n", |
| 804 | + " <th>Name</th>\n", |
| 805 | + " <th>Title</th>\n", |
| 806 | + " </tr>\n", |
| 807 | + " </thead>\n", |
| 808 | + " <tbody>\n", |
| 809 | + " <tr>\n", |
| 810 | + " <th>0</th>\n", |
| 811 | + " <td>A Cor Do Som</td>\n", |
| 812 | + " <td>None</td>\n", |
| 813 | + " </tr>\n", |
| 814 | + " <tr>\n", |
| 815 | + " <th>1</th>\n", |
| 816 | + " <td>AC/DC</td>\n", |
| 817 | + " <td>For Those About To Rock We Salute You</td>\n", |
| 818 | + " </tr>\n", |
| 819 | + " <tr>\n", |
| 820 | + " <th>2</th>\n", |
| 821 | + " <td>AC/DC</td>\n", |
| 822 | + " <td>Let There Be Rock</td>\n", |
| 823 | + " </tr>\n", |
| 824 | + " <tr>\n", |
| 825 | + " <th>3</th>\n", |
| 826 | + " <td>Aaron Copland & London Symphony Orchestra</td>\n", |
| 827 | + " <td>A Copland Celebration, Vol. I</td>\n", |
| 828 | + " </tr>\n", |
| 829 | + " <tr>\n", |
| 830 | + " <th>4</th>\n", |
| 831 | + " <td>Aaron Goldberg</td>\n", |
| 832 | + " <td>Worlds</td>\n", |
| 833 | + " </tr>\n", |
| 834 | + " </tbody>\n", |
| 835 | + "</table>\n", |
| 836 | + "</div>" |
| 837 | + ], |
| 838 | + "text/plain": [ |
| 839 | + " Name \\\n", |
| 840 | + "0 A Cor Do Som \n", |
| 841 | + "1 AC/DC \n", |
| 842 | + "2 AC/DC \n", |
| 843 | + "3 Aaron Copland & London Symphony Orchestra \n", |
| 844 | + "4 Aaron Goldberg \n", |
| 845 | + "\n", |
| 846 | + " Title \n", |
| 847 | + "0 None \n", |
| 848 | + "1 For Those About To Rock We Salute You \n", |
| 849 | + "2 Let There Be Rock \n", |
| 850 | + "3 A Copland Celebration, Vol. I \n", |
| 851 | + "4 Worlds " |
| 852 | + ] |
| 853 | + }, |
| 854 | + "execution_count": 31, |
| 855 | + "metadata": {}, |
| 856 | + "output_type": "execute_result" |
| 857 | + } |
| 858 | + ], |
742 | 859 | "source": [
|
743 |
| - "#https://www.sqlitetutorial.net/" |
| 860 | + "df = pd.read_sql_query(query, conn)\n", |
| 861 | + "df.head()" |
744 | 862 | ]
|
745 | 863 | }
|
746 | 864 | ],
|
747 | 865 | "metadata": {
|
748 | 866 | "kernelspec": {
|
749 |
| - "display_name": "Python 3", |
| 867 | + "display_name": "Python 3 (ipykernel)", |
750 | 868 | "language": "python",
|
751 | 869 | "name": "python3"
|
752 | 870 | },
|
|
760 | 878 | "name": "python",
|
761 | 879 | "nbconvert_exporter": "python",
|
762 | 880 | "pygments_lexer": "ipython3",
|
763 |
| - "version": "3.7.6" |
| 881 | + "version": "3.9.5" |
764 | 882 | }
|
765 | 883 | },
|
766 | 884 | "nbformat": 4,
|
|
0 commit comments