-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathlapack.R
196 lines (157 loc) · 5.03 KB
/
lapack.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
## tests of R functions based on the lapack module
## NB: the signs of singular and eigenvectors are arbitrary,
## so there may be differences from the reference ouptut,
## especially when alternative BLAS are used.
options(digits = 4L)
tryCmsg <- function(expr) tryCatch(expr, error = conditionMessage) # typically == *$message
## ------- examples from ?svd ---------
hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
Eps <- 100 * .Machine$double.eps
## The signs of the vectors are not determined here, so don't print
X <- hilbert(9L)[, 1:6]
s <- svd(X); D <- diag(s$d)
stopifnot(abs(X - s$u %*% D %*% t(s$v)) < Eps)# X = U D V'
stopifnot(abs(D - t(s$u) %*% X %*% s$v) < Eps)# D = U' X V
## ditto
X <- cbind(1, 1:7)
s <- svd(X); D <- diag(s$d)
stopifnot(abs(X - s$u %*% D %*% t(s$v)) < Eps)# X = U D V'
stopifnot(abs(D - t(s$u) %*% X %*% s$v) < Eps)# D = U' X V
# test nu and nv
s <- svd(X, nu = 0L)
s <- svd(X, nu = 7L) # the last 5 columns are not determined here
stopifnot(dim(s$u) == c(7L,7L))
s <- svd(X, nv = 0L)
# test of complex case
X <- cbind(1, 1:7+(-3:3)*1i)
s <- svd(X); D <- diag(s$d)
stopifnot(abs(X - s$u %*% D %*% Conj(t(s$v))) < Eps)
stopifnot(abs(D - Conj(t(s$u)) %*% X %*% s$v) < Eps)
## ------- tests of random real and complex matrices ------
fixsign <- function(A) {
A[] <- apply(A, 2L, function(x) x*sign(Re(x[1L])))
A
}
## 100 may cause failures here.
eigenok <- function(A, E, Eps=1000*.Machine$double.eps)
{
print(fixsign(E$vectors))
print(zapsmall(E$values))
V <- E$vectors; lam <- E$values
stopifnot(abs(A %*% V - V %*% diag(lam)) < Eps,
abs(lam[length(lam)]/lam[1]) < Eps | # this one not for singular A :
abs(A - V %*% diag(lam) %*% t(V)) < Eps)
}
Ceigenok <- function(A, E, Eps=1000*.Machine$double.eps)
{
print(fixsign(E$vectors))
print(signif(E$values, 5))
V <- E$vectors; lam <- E$values
stopifnot(Mod(A %*% V - V %*% diag(lam)) < Eps,
Mod(A - V %*% diag(lam) %*% Conj(t(V))) < Eps)
}
## failed for some 64bit-Lapack-gcc combinations:
sm <- cbind(1, 3:1, 1:3)
eigenok(sm, eigen(sm))
eigenok(sm, eigen(sm, sym=FALSE))
set.seed(123)
sm <- matrix(rnorm(25), 5, 5)
sm <- 0.5 * (sm + t(sm))
eigenok(sm, eigen(sm))
eigenok(sm, eigen(sm, sym=FALSE))
sm[] <- as.complex(sm)
Ceigenok(sm, eigen(sm))
Ceigenok(sm, eigen(sm, sym=FALSE))
sm[] <- sm + rnorm(25) * 1i
sm <- 0.5 * (sm + Conj(t(sm)))
Ceigenok(sm, eigen(sm))
Ceigenok(sm, eigen(sm, sym=FALSE))
## ------- tests of integer matrices -----------------
set.seed(123)
A <- matrix(rpois(25, 5), 5, 5)
A %*% A
crossprod(A)
tcrossprod(A)
solve(A)
qr(A)
determinant(A, log = FALSE)
rcond(A)
rcond(A, "I")
rcond(A, "1")
eigen(A)
## The signs of the 'u' and 'v/vt' components can vary in the next two
A0 <- svd(A)
A1 <- La.svd(A)
## OK to test == as these are the same Fortran calls.
stopifnot(A1$d == A0$d, A1$u == A0$u, A1$vt == t(A0$v))
## Fix the signs before printing.
s <- rep(sign(A0$u[1,]), each=5); A0$u <- s * A0$u; A0$v <- s * A0$v
A0
As <- crossprod(A)
E <- eigen(As)
E$values
abs(E$vectors) # signs vary
chol(As)
backsolve(As, 1:5)
## ------- tests of logical matrices -----------------
set.seed(123)
A <- matrix(runif(25) > 0.5, 5, 5)
A %*% A
crossprod(A)
tcrossprod(A)
Q <- qr(A)
zapsmall(Q$qr)
zapsmall(Q$qraux)
determinant(A, log = FALSE) # 0
rcond(A)
rcond(A, "I")
rcond(A, "1")
E <- eigen(A)
zapsmall(E$values)
zapsmall(Mod(E$vectors))
S <- svd(A)
zapsmall(S$d)
S <- La.svd(A)
zapsmall(S$d)
As <- A
As[upper.tri(A)] <- t(A)[upper.tri(A)]
det(As)
E <- eigen(As)
E$values
## The eigenvectors are of arbitrary sign, so we fix the first element to
## be positive for cross-platform comparisons.
Ev <- E$vectors
zapsmall(Ev * rep(sign(Ev[1, ]), each = 5))
solve(As)
## quite hard to come up with an example where this might make sense.
Ac <- A; Ac[] <- as.logical(diag(5))
chol(Ac)
## ------- tests of non-finite values -----------------
a <- matrix(NaN, 3, 3,, list(one=1:3, two=letters[1:3]))
b <- cbind(1:3, NA)
dimnames(b) <- list(One=4:6, Two=11:12)
bb <- 1:3; names(bb) <- 11:12
## gave error with LAPACK 3.11.0
## names(dimnames(.)), ("two", "Two") are lost {FIXME?}:
## IGNORE_RDIFF_BEGIN
stopifnot(is.na(print(solve(a, b )))) # is.na(): NA *or* NaN
## IGNORE_RDIFF_END
stopifnot(is.na(print(solve(a, bb)))) # all NaN
A <- a + 0i
A_b <- solve(A, b) # platform dependent result (e.g. OPENBLAS ..)
stopifnot(is.na(A_b))
## IGNORE_RDIFF_BEGIN
A_b
rbind(re = Re(A_b[,2]), im = Im(A_b[,2])) # often was "all NA", now typically "re=NA, im=NaN"
## IGNORE_RDIFF_END
## PR#18541 by Mikael Jagan -- chol() error & warning message:
x <- diag(-1, 5L)
(chF <- tryCmsg(chol(x, pivot = FALSE))) # dpotrf
(chT <- withCallingHandlers(warning = function(w) ..W <<- conditionMessage(w),
chol(x, pivot = TRUE ))) # dpstrf
stopifnot(exprs = {
grepl(" minor .* not positive$", chF) # was "not positive *definite*
grepl("rank-deficient or not positive definite$", ..W) # was "indefinite*
## platform dependent, Mac has several NaN's chT == -diag(5)
attr(chT, "rank") %in% 0:1
})