-
Notifications
You must be signed in to change notification settings - Fork 505
/
Copy pathtest_utils.py
422 lines (383 loc) · 14.3 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import collections
from contextlib import contextmanager
import itertools
import math
import os
import sys
import unittest
from numbers import Number
import torch
import numpy
import random
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.utils.utils as xu
def _set_rng_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
numpy.random.seed(seed)
xm.set_rng_state(seed)
def _prepare_tensors_for_diff(ta, tb):
a = ta.to(device='cpu')
b = tb.to(device='cpu')
if a.dtype == torch.float16 or a.dtype == torch.bfloat16:
a = a.to(torch.float32)
if b.dtype == torch.float16 or b.dtype == torch.bfloat16:
b = b.to(torch.float32)
if b.dtype != a.dtype:
b = b.to(a.dtype)
if xu.getenv_as('TEST_PRINT_TENSORS', bool, defval=False):
print('Tensor A ({}):\n{}'.format(ta.device, a), file=sys.stderr)
print('Tensor B ({}):\n{}'.format(tb.device, b), file=sys.stderr)
return a, b
def _is_iterable(obj):
try:
iter(obj)
return True
except TypeError:
return False
class Holder(object):
pass
def _iter_indices(tensor):
if tensor.dim() == 0:
return range(0)
if tensor.dim() == 1:
return range(tensor.size(0))
return itertools.product(*(range(s) for s in tensor.size()))
def _dump_differences(target, result, rtol=1e-5, atol=1e-3, max_diff_count=0):
env = Holder()
env.max_diff = 0.0
env.max_rel = None
env.max_index = None
env.diff_count = 0
def check_values(a, b, index):
a, b = _prepare_tensors_for_diff(a, b)
r = max(abs(a), abs(b)) * rtol
diff = abs(a - b)
if diff > max(r, atol):
print('a={}\tb={}\tdiff={}\tindex={}'.format(a, b, diff, index))
env.diff_count += 1
if diff > env.max_diff:
env.max_diff = diff
env.max_rel = diff / max(abs(a), abs(b))
env.max_index = index
if isinstance(target, torch.Tensor):
assert isinstance(result, torch.Tensor)
assert target.size() == result.size()
if target.dim() > 0:
for i in _iter_indices(target):
check_values(target[i], result[i], i)
if max_diff_count > 0 and env.diff_count >= max_diff_count:
break
else:
check_values(target.item(), result.item(), 0)
elif isinstance(target, (list, tuple)):
assert isinstance(result, (list, tuple))
assert len(target) == len(result)
for i, v in enumerate(target):
check_values(v, result[i], [i])
if max_diff_count > 0 and env.diff_count >= max_diff_count:
break
elif isinstance(target, float):
assert isinstance(result, float)
check_values(target, result, [])
if env.max_index is not None:
print('\nmax_diff={}\tmax_rel={}\tindex={}'.format(env.max_diff,
env.max_rel,
env.max_index))
class XlaTestCase(unittest.TestCase):
PRECISION = 1e-5
STRING_CLASSES = (str, bytes)
def __init__(self, method_name='runTest'):
super(XlaTestCase, self).__init__(method_name)
def setUp(self):
_set_rng_seed(1234)
def safeCoalesce(self, t):
tc = t.coalesce()
self.assertEqual(tc.to_dense(), t.to_dense())
self.assertTrue(tc.is_coalesced())
# Our code below doesn't work when nnz is 0, because
# then it's a 0D tensor, not a 2D tensor.
if t._nnz() == 0:
self.assertEqual(t._indices(), tc._indices())
self.assertEqual(t._values(), tc._values())
return tc
value_map = {}
for idx, val in zip(t._indices().t(), t._values()):
idx_tup = tuple(idx.tolist())
if idx_tup in value_map:
value_map[idx_tup] += val
else:
value_map[idx_tup] = val.clone() if isinstance(val,
torch.Tensor) else val
new_indices = sorted(list(value_map.keys()))
new_values = [value_map[idx] for idx in new_indices]
if t._values().ndimension() < 2:
new_values = t._values().new(new_values)
else:
new_values = torch.stack(new_values)
new_indices = t._indices().new(new_indices).t()
tg = t.new(new_indices, new_values, t.size())
self.assertEqual(tc._indices(), tg._indices())
self.assertEqual(tc._values(), tg._values())
if t.is_coalesced():
self.assertEqual(tc._indices(), t._indices())
self.assertEqual(tc._values(), t._values())
return tg
# This has been copied from pytorch/test/common_utils.py in order to decouple
# PyTorch/XLA tests from pytorch tests. We use this API only with a very
# limited set of object types, so it could be eventually simplified.
def assertEqual(self, x, y, prec=None, message='', allow_inf=False):
if isinstance(prec, str) and message == '':
message = prec
prec = None
if prec is None:
prec = self.PRECISION
if isinstance(x, torch.Tensor) and isinstance(y, Number):
self.assertEqual(
x.item(), y, prec=prec, message=message, allow_inf=allow_inf)
elif isinstance(y, torch.Tensor) and isinstance(x, Number):
self.assertEqual(
x, y.item(), prec=prec, message=message, allow_inf=allow_inf)
elif isinstance(x, torch.Tensor) and isinstance(y, numpy.bool_):
self.assertEqual(
x.item(), y, prec=prec, message=message, allow_inf=allow_inf)
elif isinstance(y, torch.Tensor) and isinstance(x, numpy.bool_):
self.assertEqual(
x, y.item(), prec=prec, message=message, allow_inf=allow_inf)
elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
def assertTensorsEqual(a, b):
super(XlaTestCase, self).assertEqual(a.size(), b.size(), message)
if a.numel() > 0:
a, b = _prepare_tensors_for_diff(a, b)
if (a.dtype == torch.bool) != (b.dtype == torch.bool):
raise TypeError('Was expecting both tensors to be bool type.')
else:
if a.dtype == torch.bool and b.dtype == torch.bool:
# we want to respect precision but as bool doesn't support substraction,
# boolean tensor has to be converted to int
a = a.to(torch.int)
b = b.to(torch.int)
diff = a - b
# check that NaNs are in the same locations
nan_mask = torch.isnan(a)
self.assertTrue(torch.equal(nan_mask, torch.isnan(b)), message)
diff[nan_mask] = 0
# inf check if allow_inf=True
if allow_inf:
inf_mask = torch.isinf(a)
inf_sign = inf_mask.sign()
self.assertTrue(
torch.equal(inf_sign,
torch.isinf(b).sign()), message)
diff[inf_mask] = 0
# TODO: implement abs on CharTensor (int8)
if diff.is_signed() and diff.dtype != torch.int8:
diff = diff.abs()
max_err = diff.max()
self.assertLessEqual(max_err, prec, message)
super(XlaTestCase, self).assertEqual(x.is_sparse, y.is_sparse, message)
super(XlaTestCase, self).assertEqual(x.is_quantized, y.is_quantized,
message)
if x.is_sparse:
x = self.safeCoalesce(x)
y = self.safeCoalesce(y)
assertTensorsEqual(x._indices(), y._indices())
assertTensorsEqual(x._values(), y._values())
elif x.is_quantized and y.is_quantized:
self.assertEqual(
x.qscheme(),
y.qscheme(),
prec=prec,
message=message,
allow_inf=allow_inf)
if x.qscheme() == torch.per_tensor_affine:
self.assertEqual(
x.q_scale(),
y.q_scale(),
prec=prec,
message=message,
allow_inf=allow_inf)
self.assertEqual(
x.q_zero_point(),
y.q_zero_point(),
prec=prec,
message=message,
allow_inf=allow_inf)
elif x.qscheme() == torch.per_channel_affine:
self.assertEqual(
x.q_per_channel_scales(),
y.q_per_channel_scales(),
prec=prec,
message=message,
allow_inf=allow_inf)
self.assertEqual(
x.q_per_channel_zero_points(),
y.q_per_channel_zero_points(),
prec=prec,
message=message,
allow_inf=allow_inf)
self.assertEqual(
x.q_per_channel_axis(),
y.q_per_channel_axis(),
prec=prec,
message=message)
self.assertEqual(x.dtype, y.dtype)
self.assertEqual(
x.int_repr().to(torch.int32),
y.int_repr().to(torch.int32),
prec=prec,
message=message,
allow_inf=allow_inf)
else:
assertTensorsEqual(x, y)
elif isinstance(x, self.STRING_CLASSES) and isinstance(
y, self.STRING_CLASSES):
super(XlaTestCase, self).assertEqual(x, y, message)
elif type(x) == set and type(y) == set:
super(XlaTestCase, self).assertEqual(x, y, message)
elif isinstance(x, dict) and isinstance(y, dict):
if isinstance(x, collections.OrderedDict) and isinstance(
y, collections.OrderedDict):
self.assertEqual(
x.items(),
y.items(),
prec=prec,
message=message,
allow_inf=allow_inf)
else:
self.assertEqual(
set(x.keys()),
set(y.keys()),
prec=prec,
message=message,
allow_inf=allow_inf)
key_list = list(x.keys())
self.assertEqual([x[k] for k in key_list], [y[k] for k in key_list],
prec=prec,
message=message,
allow_inf=allow_inf)
elif _is_iterable(x) and _is_iterable(y):
super(XlaTestCase, self).assertEqual(len(x), len(y), message)
for x_, y_ in zip(x, y):
self.assertEqual(
x_, y_, prec=prec, message=message, allow_inf=allow_inf)
elif isinstance(x, bool) and isinstance(y, bool):
super(XlaTestCase, self).assertEqual(x, y, message)
elif isinstance(x, Number) and isinstance(y, Number):
if abs(x) == math.inf or abs(y) == math.inf:
if allow_inf:
super(XlaTestCase, self).assertEqual(x, y, message)
else:
self.fail('Expected finite numeric values - x={}, y={}'.format(x, y))
return
super(XlaTestCase, self).assertLessEqual(abs(x - y), prec, message)
else:
super(XlaTestCase, self).assertEqual(x, y, message)
def assertEqualRel(self,
out,
expected,
rel_err=1e-2,
abs_err=1e-5,
max_diff_count=0):
try:
out, expected = _prepare_tensors_for_diff(out, expected)
nan_mask = torch.isnan(expected)
self.assertTrue(torch.equal(nan_mask, torch.isnan(out)))
out[nan_mask] = 0
expected[nan_mask] = 0
inf_mask = torch.isinf(expected)
self.assertTrue(torch.equal(inf_mask, torch.isinf(out)))
out[inf_mask] = 0
expected[inf_mask] = 0
diff_tensor = (out - expected).abs().float()
max_rel_err = torch.max(out.abs(), expected.abs()).float() * rel_err
# Allow higher relative differences as long as we're still below the
# absolute error.
max_abs_err = torch.max(max_rel_err,
torch.ones_like(out).float() * abs_err)
super(XlaTestCase, self).assertEqual(diff_tensor.size(),
max_abs_err.size())
if (diff_tensor.numel() > 0 and
torch.le(diff_tensor, max_abs_err).min().item() == 0):
self.fail('Relative error higher than the maximum tolerance')
except:
_dump_differences(
expected,
out,
rtol=rel_err,
atol=abs_err,
max_diff_count=max_diff_count)
raise
def assertEqualDbg(self, out, expected, max_diff_count=0):
try:
super(XlaTestCase, self).assertEqual(out, expected)
except:
_dump_differences(
expected, out, rtol=1e-8, atol=1e-8, max_diff_count=max_diff_count)
raise
def makeComparable(self, value):
if isinstance(value, torch.Tensor):
if value.dtype == torch.bool:
value = value.to(dtype=torch.uint8)
if xm.is_xla_tensor(value.data):
return value.data.cpu()
return value.data
return value
def maybePrintGraph(self, tensors):
env = os.environ.get('TEST_PRINT_GRAPH', '').lower()
if env:
if env == 'text':
print(
'Test Graph:\n{}'.format(
torch_xla._XLAC._get_xla_tensors_text(tensors)),
file=sys.stderr)
elif env == 'hlo':
print(
'Test Graph:\n{}'.format(
torch_xla._XLAC._get_xla_tensors_hlo(tensors)),
file=sys.stderr)
else:
raise RuntimeError('Invalid TEST_PRINT_GRAPH value: {}'.format(env))
def compareResults(self, results, xla_results, rel_err=1e-2, abs_err=1e-5):
self.maybePrintGraph(xla_results)
for at, xt in zip(results, xla_results):
self.assertEqualRel(
self.makeComparable(xt),
self.makeComparable(at),
rel_err=rel_err,
abs_err=abs_err)
def runAtenTest(self, tensors, fn, device=None, rel_err=1e-2, abs_err=1e-5):
if device is None:
device = xm.xla_device()
tensors = xu.as_list(tensors)
xla_tensors = [
x.to(device).detach().requires_grad_(x.requires_grad) for x in tensors
]
results = xu.as_list(fn(*tensors))
xla_results = xu.as_list(fn(*xla_tensors))
self.compareResults(results, xla_results, rel_err=rel_err, abs_err=abs_err)
@contextmanager
def temporary_env(**kwargs):
"""
Temporarily set environment variables within the context.
Args:
**kwargs: Key-value pairs representing environment variables to set.
For example: temporary_env(PATH='/new/path', DEBUG='1')
"""
original_env = {}
# Store original values and set new ones
for key, value in kwargs.items():
original_env[key] = os.environ.get(key, None)
os.environ[key] = value
try:
yield
finally:
# Restore original environment variables
for key, old_value in original_env.items():
if old_value is None:
# The variable was not originally set
del os.environ[key]
else:
# Restore the original value
os.environ[key] = old_value