-
Notifications
You must be signed in to change notification settings - Fork 505
/
Copy pathtest_python_ops.py
160 lines (134 loc) · 5.88 KB
/
test_python_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import torch.nn as nn
import torch_xla
import torch_xla.core.xla_model as xm
import unittest
import test_utils
import pytorch_test_base
from torch.testing import make_tensor
from itertools import product
from functools import partial
from torch.testing._internal.common_utils import TestCase, run_tests, IS_JETSON
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests, dtypes)
from torch.testing._internal.common_dtype import (all_types_and_complex_and)
# These tests are a copy of upstream pytorch tests due to the way lazy tensors
# work. The randperm op generates a random tensor. Every iteration of the test
# recompiles the randperm op thus generating a different random tensor which
# makes the test non-deterministic. To force determinism, this test has to
# call PyTorch/XLA mark_step() to materialize the tensor rather than recompile.
class TestPythonOps(pytorch_test_base.XLATestBase):
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_put(self, dtype):
if dtype in self.unsupported_dtypes:
raise unittest.SkipTest("Dtype {0} is unsupported by XLA".format(
str(dtype)))
if dtype == torch.uint8:
raise unittest.SkipTest(
'TODO(https://github.com/pytorch/xla/issues/8799): Re-enable uint8 test'
)
device = xm.xla_device()
real_device_type = xm.xla_device_hw(str(xm.xla_device()))
if real_device_type == "TPU":
raise unittest.SkipTest("TestPut is too slow on TPU. Skipped")
src_size = (4,)
make_arg = partial(make_tensor, device=device, dtype=dtype)
make_idx = partial(make_tensor, low=0, device=device, dtype=torch.int64)
def ref_put(dst, idx, src, accumulate):
new_dst = dst.clone(memory_format=torch.contiguous_format).view(-1)
new_idx = idx.contiguous().view(-1)
new_src = src.contiguous().view(-1)
method = new_dst.index_add_ if accumulate else new_dst.index_copy_
return method(0, new_idx, new_src).view_as(dst)
for dst_contig, src_contig, idx_contig, idx_reshape, accumulate in product(
[True, False], repeat=5):
for dst_size in ((5,), (4, 5)):
dst = make_arg(dst_size, noncontiguous=not dst_contig)
src = make_arg(src_size, noncontiguous=not src_contig)
# If accumulate=True, `put_` should be deterministic regardless of the inputs on CPU
# On CUDA it may not be, but the test has enough tolerance to account for this
if accumulate:
idx = make_idx(src_size, high=dst.numel())
else:
idx = torch.randperm(
dst.numel(), dtype=torch.int64, device=device)[:src_size[0]]
if not idx_contig:
idx = torch.repeat_interleave(idx, 2, dim=-1)[..., ::2]
if idx_reshape:
idx = idx.reshape(2, 2)
out = torch.put(dst, idx, src, accumulate)
xm.mark_step()
# out-place
reference = ref_put(dst, idx, src, accumulate)
self.assertEqual(out, reference)
# in-place
dst.put_(idx, src, accumulate)
self.assertEqual(dst, reference)
# Create the 8 possible combinations of scalar sizes for target / index / source
scalars = ((make_arg(size_t), make_idx(size_i, high=1), make_arg(size_s))
for size_t, size_i, size_s in product([(), (1,)], repeat=3))
for (dest, idx, source), accumulate in product(scalars, [True, False]):
dest_init = dest.clone()
# out-place
out = torch.put(dest, idx, source, accumulate=accumulate)
# in-place
dest1 = dest.clone()
dest1.put_(idx, source, accumulate=accumulate)
for d in [out, dest1]:
if accumulate:
self.assertEqual(d.item(), (dest_init + source).item())
else:
self.assertEqual(d.item(), source.item())
# Empty case
dest = make_arg((3, 2))
reference = dest.clone()
idx = make_idx((0,), high=1)
source = make_arg((0,))
for accumulate in [True, False]:
out = torch.put(dest, idx, source, accumulate=accumulate)
self.assertEqual(out, reference)
dest.put_(idx, source, accumulate=accumulate)
self.assertEqual(dest, reference)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_index_copy(self, dtype):
if dtype in self.unsupported_dtypes:
raise unittest.SkipTest("Dtype {0} is unsupported by XLA".format(
str(dtype)))
device = xm.xla_device()
# We just test for num_copy <= num_dest, as otherwise there are repeated indices
# and the behavior is undefined
num_copy, num_dest = 3, 5
def make_arg(batch_sizes, n, dim, contig):
size_arg = batch_sizes[:dim] + (n,) + batch_sizes[dim:]
return make_tensor(
size_arg,
dtype=dtype,
device=device,
low=None,
high=None,
noncontiguous=not contig)
def ref_index_copy(tgt, dim, idx, src):
for i in range(idx.size(0)):
idx_dest = dim * (slice(None),) + (idx[i],)
idx_src = dim * (slice(None),) + (i,)
tgt[idx_dest] = src[idx_src]
# More thorough testing as in index_add
for dest_contig, src_contig, index_contig in product([True, False],
repeat=3):
for other_sizes in ((), (4, 5)):
for dim in range(len(other_sizes)):
dest = make_arg(other_sizes, num_dest, dim, dest_contig)
src = make_arg(other_sizes, num_copy, dim, src_contig)
idx = torch.randperm(
num_dest, dtype=torch.int64, device=device)[:num_copy]
if not index_contig:
idx = torch.repeat_interleave(idx, 2, dim=-1)
idx = idx[..., ::2]
xm.mark_step()
dest2 = dest.clone()
dest.index_copy_(dim, idx, src)
ref_index_copy(dest2, dim, idx, src)
self.assertEqual(dest, dest2)
instantiate_device_type_tests(TestPythonOps, globals())
if __name__ == '__main__':
run_tests()