.. automodule:: torch.cuda
.. currentmodule:: torch.cuda
.. autosummary::
:toctree: generated
:nosignatures:
StreamContext
can_device_access_peer
current_blas_handle
current_device
current_stream
cudart
default_stream
device
device_count
device_memory_used
device_of
get_arch_list
get_device_capability
get_device_name
get_device_properties
get_gencode_flags
get_stream_from_external
get_sync_debug_mode
init
ipc_collect
is_available
is_initialized
is_tf32_supported
memory_usage
set_device
set_stream
set_sync_debug_mode
stream
synchronize
utilization
temperature
power_draw
clock_rate
OutOfMemoryError
.. autosummary::
:toctree: generated
:nosignatures:
get_rng_state
get_rng_state_all
set_rng_state
set_rng_state_all
manual_seed
manual_seed_all
seed
seed_all
initial_seed
.. autosummary::
:toctree: generated
:nosignatures:
comm.broadcast
comm.broadcast_coalesced
comm.reduce_add
comm.reduce_add_coalesced
comm.scatter
comm.gather
.. autosummary::
:toctree: generated
:nosignatures:
Stream
ExternalStream
Event
.. autosummary::
:toctree: generated
:nosignatures:
is_current_stream_capturing
graph_pool_handle
CUDAGraph
graph
make_graphed_callables
.. autosummary::
:toctree: generated
:nosignatures:
empty_cache
get_per_process_memory_fraction
list_gpu_processes
mem_get_info
memory_stats
host_memory_stats
memory_summary
memory_snapshot
memory_allocated
max_memory_allocated
reset_max_memory_allocated
memory_reserved
max_memory_reserved
set_per_process_memory_fraction
memory_cached
max_memory_cached
reset_max_memory_cached
reset_peak_memory_stats
reset_peak_host_memory_stats
caching_allocator_alloc
caching_allocator_delete
get_allocator_backend
CUDAPluggableAllocator
change_current_allocator
MemPool
MemPoolContext
.. currentmodule:: torch.cuda.memory
.. autosummary::
:toctree: generated
:nosignatures:
caching_allocator_enable
.. currentmodule:: torch.cuda
.. autoclass:: torch.cuda.use_mem_pool
.. autosummary::
:toctree: generated
:nosignatures:
nvtx.mark
nvtx.range_push
nvtx.range_pop
nvtx.range
.. autosummary::
:toctree: generated
:nosignatures:
jiterator._create_jit_fn
jiterator._create_multi_output_jit_fn
Some operations could be implemented using more than one library or more than one technique. For example, a GEMM could be implemented for CUDA or ROCm using either the cublas/cublasLt libraries or hipblas/hipblasLt libraries, respectively. How does one know which implementation is the fastest and should be chosen? That's what TunableOp provides. Certain operators have been implemented using multiple strategies as Tunable Operators. At runtime, all strategies are profiled and the fastest is selected for all subsequent operations.
See the :doc:`documentation <cuda.tunable>` for information on how to use it.
.. toctree::
:hidden:
cuda.tunable
CUDA Sanitizer is a prototype tool for detecting synchronization errors between streams in PyTorch. See the :doc:`documentation <cuda._sanitizer>` for information on how to use it.
.. toctree::
:hidden:
cuda._sanitizer
The APIs in torch.cuda.gds
provide thin wrappers around certain cuFile APIs that allow
direct memory access transfers between GPU memory and storage, avoiding a bounce buffer in the CPU. See the
cufile api documentation
for more details.
These APIs can be used in versions greater than or equal to CUDA 12.6. In order to use these APIs, one must ensure that their system is appropriately configured to use GPUDirect Storage per the GPUDirect Storage documentation.
See the docs for :class:`~torch.cuda.gds.GdsFile` for an example of how to use these.
.. currentmodule:: torch.cuda.gds
.. autosummary::
:toctree: generated
:nosignatures:
gds_register_buffer
gds_deregister_buffer
GdsFile
.. py:module:: torch.cuda.comm
.. py:module:: torch.cuda.error
.. py:module:: torch.cuda.gds
.. py:module:: torch.cuda.graphs
.. py:module:: torch.cuda.jiterator
.. py:module:: torch.cuda.memory
.. py:module:: torch.cuda.nccl
.. py:module:: torch.cuda.nvtx
.. py:module:: torch.cuda.profiler
.. py:module:: torch.cuda.random
.. py:module:: torch.cuda.sparse
.. py:module:: torch.cuda.streams