-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrandomness.html
1005 lines (809 loc) · 56.1 KB
/
randomness.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Reproducibility — PyTorch 2.2 documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/notes/randomness.html"/>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/katex-math.css" type="text/css" />
<link rel="stylesheet" href="../_static/sphinx-dropdown.css" type="text/css" />
<link rel="stylesheet" href="../_static/panels-bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/jit.css" type="text/css" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Serialization semantics" href="serialization.html" />
<link rel="prev" title="Numerical accuracy" href="numerical_accuracy.html" />
<!-- Google Tag Manager -->
<script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':
new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],
j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src=
'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);
})(window,document,'script','dataLayer','GTM-T8XT4PS');</script>
<!-- End Google Tag Manager -->
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Edge
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/edge">
<span class="dropdown-title">About PyTorch Edge</span>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/executorch">
<span class="dropdown-title">ExecuTorch</span>
</a>
</div>
</div>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active docs-active">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-orange-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/docs/stable/index.html">
<span class="dropdown-title">PyTorch</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/audio/stable/index.html">
<span class="dropdown-title">torchaudio</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/text/stable/index.html">
<span class="dropdown-title">torchtext</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/vision/stable/index.html">
<span class="dropdown-title">torchvision</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torcharrow">
<span class="dropdown-title">torcharrow</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/data">
<span class="dropdown-title">TorchData</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchrec">
<span class="dropdown-title">TorchRec</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/serve/">
<span class="dropdown-title">TorchServe</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchx/">
<span class="dropdown-title">TorchX</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/xla">
<span class="dropdown-title">PyTorch on XLA Devices</span>
<p></p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Resources
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/features">
<span class="dropdown-title">About</span>
<p>Learn about PyTorch’s features and capabilities</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/foundation">
<span class="dropdown-title">PyTorch Foundation</span>
<p>Learn about the PyTorch foundation</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class="dropdown-title">Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/community-stories">
<span class="dropdown-title">Community Stories</span>
<p>Learn how our community solves real, everyday machine learning problems with PyTorch.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class="dropdown-title">Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/events">
<span class="dropdown-title">Events</span>
<p>Find events, webinars, and podcasts</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class="dropdown-title">Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/hub">
<span class="dropdown-title">Models (Beta)</span>
<p>Discover, publish, and reuse pre-trained models</p>
</a>
</div>
</div>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='https://pytorch.org/docs/versions.html'>2.2 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../community/build_ci_governance.html">PyTorch Governance | Build + CI</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/design.html">PyTorch Design Philosophy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/governance.html">PyTorch Governance | Mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/persons_of_interest.html">PyTorch Governance | Maintainers</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="amp_examples.html">CUDA Automatic Mixed Precision examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="cpu_threading_torchscript_inference.html">CPU threading and TorchScript inference</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">CUDA semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="ddp.html">Distributed Data Parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="extending.html">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="extending.func.html">Extending torch.func with autograd.Function</a></li>
<li class="toctree-l1"><a class="reference internal" href="faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="gradcheck.html">Gradcheck mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="hip.html">HIP (ROCm) semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="large_scale_deployments.html">Features for large-scale deployments</a></li>
<li class="toctree-l1"><a class="reference internal" href="modules.html">Modules</a></li>
<li class="toctree-l1"><a class="reference internal" href="mps.html">MPS backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="numerical_accuracy.html">Numerical accuracy</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="windows.html">Windows FAQ</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Language Bindings</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../cpp_index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/javadoc/">Javadoc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../deploy.html">torch::deploy</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../torch.html">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.functional.html">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_view.html">Tensor Views</a></li>
<li class="toctree-l1"><a class="reference internal" href="../amp.html">torch.amp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="../library.html">torch.library</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cpu.html">torch.cpu</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch_cuda_memory.html">Understanding CUDA Memory Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch_cuda_memory.html#generating-a-snapshot">Generating a Snapshot</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch_cuda_memory.html#using-the-visualizer">Using the visualizer</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch_cuda_memory.html#snapshot-api-reference">Snapshot API Reference</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mps.html">torch.mps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../backends.html">torch.backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../export.html">torch.export</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.algorithms.join.html">torch.distributed.algorithms.join</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.elastic.html">torch.distributed.elastic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fsdp.html">torch.distributed.fsdp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.optim.html">torch.distributed.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.tensor.parallel.html">torch.distributed.tensor.parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.checkpoint.html">torch.distributed.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch.compiler.html">torch.compiler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fft.html">torch.fft</a></li>
<li class="toctree-l1"><a class="reference internal" href="../func.html">torch.func</a></li>
<li class="toctree-l1"><a class="reference internal" href="../futures.html">torch.futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fx.html">torch.fx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="../jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../linalg.html">torch.linalg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../monitor.html">torch.monitor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../signal.html">torch.signal</a></li>
<li class="toctree-l1"><a class="reference internal" href="../special.html">torch.special</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch.overrides.html">torch.overrides</a></li>
<li class="toctree-l1"><a class="reference internal" href="../package.html">torch.package</a></li>
<li class="toctree-l1"><a class="reference internal" href="../profiler.html">torch.profiler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.init.html">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="../onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../complex_numbers.html">Complex Numbers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ddp_comm_hooks.html">DDP Communication Hooks</a></li>
<li class="toctree-l1"><a class="reference internal" href="../pipeline.html">Pipeline Parallelism</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../rpc.html">Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="../random.html">torch.random</a></li>
<li class="toctree-l1"><a class="reference internal" href="../masked.html">torch.masked</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nested.html">torch.nested</a></li>
<li class="toctree-l1"><a class="reference internal" href="../sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../testing.html">torch.testing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../utils.html">torch.utils</a></li>
<li class="toctree-l1"><a class="reference internal" href="../benchmark_utils.html">torch.utils.benchmark</a></li>
<li class="toctree-l1"><a class="reference internal" href="../bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="../checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="../data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../deterministic.html">torch.utils.deterministic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../jit_utils.html">torch.utils.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mobile_optimizer.html">torch.utils.mobile_optimizer</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensorboard.html">torch.utils.tensorboard</a></li>
<li class="toctree-l1"><a class="reference internal" href="../type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="../named_tensor.html">Named Tensors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../name_inference.html">Named Tensors operator coverage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../config_mod.html">torch.__config__</a></li>
<li class="toctree-l1"><a class="reference internal" href="../logging.html">torch._logging</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Libraries</span></p>
<ul>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/audio/stable">torchaudio</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/data">TorchData</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/torchrec">TorchRec</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/serve">TorchServe</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/text/stable">torchtext</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/vision/stable">torchvision</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/xla/">PyTorch on XLA Devices</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../index.html">
Docs
</a> >
</li>
<li>Reproducibility</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/notes/randomness.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<!-- Google Tag Manager (noscript) -->
<noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T8XT4PS"
height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript>
<!-- End Google Tag Manager (noscript) -->
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<div class="section" id="reproducibility">
<span id="id1"></span><h1>Reproducibility<a class="headerlink" href="#reproducibility" title="Permalink to this heading">¶</a></h1>
<p>Completely reproducible results are not guaranteed across PyTorch releases,
individual commits, or different platforms. Furthermore, results may not be
reproducible between CPU and GPU executions, even when using identical seeds.</p>
<p>However, there are some steps you can take to limit the number of sources of
nondeterministic behavior for a specific platform, device, and PyTorch release.
First, you can control sources of randomness that can cause multiple executions
of your application to behave differently. Second, you can configure PyTorch
to avoid using nondeterministic algorithms for some operations, so that multiple
calls to those operations, given the same inputs, will produce the same result.</p>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>Deterministic operations are often slower than nondeterministic operations, so
single-run performance may decrease for your model. However, determinism may
save time in development by facilitating experimentation, debugging, and
regression testing.</p>
</div>
<div class="section" id="controlling-sources-of-randomness">
<h2>Controlling sources of randomness<a class="headerlink" href="#controlling-sources-of-randomness" title="Permalink to this heading">¶</a></h2>
<div class="section" id="pytorch-random-number-generator">
<h3>PyTorch random number generator<a class="headerlink" href="#pytorch-random-number-generator" title="Permalink to this heading">¶</a></h3>
<p>You can use <a class="reference internal" href="../generated/torch.manual_seed.html#torch.manual_seed" title="torch.manual_seed"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.manual_seed()</span></code></a> to seed the RNG for all devices (both
CPU and CUDA):</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="n">torch</span><span class="o">.</span><span class="n">manual_seed</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
<p>Some PyTorch operations may use random numbers internally.
<a class="reference internal" href="../generated/torch.svd_lowrank.html#torch.svd_lowrank" title="torch.svd_lowrank"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.svd_lowrank()</span></code></a> does this, for instance. Consequently, calling it
multiple times back-to-back with the same input arguments may give different
results. However, as long as <a class="reference internal" href="../generated/torch.manual_seed.html#torch.manual_seed" title="torch.manual_seed"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.manual_seed()</span></code></a> is set to a constant
at the beginning of an application and all other sources of nondeterminism have
been eliminated, the same series of random numbers will be generated each time
the application is run in the same environment.</p>
<p>It is also possible to obtain identical results from an operation that uses
random numbers by setting <a class="reference internal" href="../generated/torch.manual_seed.html#torch.manual_seed" title="torch.manual_seed"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.manual_seed()</span></code></a> to the same value between
subsequent calls.</p>
</div>
<div class="section" id="python">
<h3>Python<a class="headerlink" href="#python" title="Permalink to this heading">¶</a></h3>
<p>For custom operators, you might need to set python seed as well:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">random</span>
<span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="random-number-generators-in-other-libraries">
<h3>Random number generators in other libraries<a class="headerlink" href="#random-number-generators-in-other-libraries" title="Permalink to this heading">¶</a></h3>
<p>If you or any of the libraries you are using rely on NumPy, you can seed the global
NumPy RNG with:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
<p>However, some applications and libraries may use NumPy Random Generator objects,
not the global RNG
(<a class="reference external" href="https://numpy.org/doc/stable/reference/random/generator.html">https://numpy.org/doc/stable/reference/random/generator.html</a>), and those will
need to be seeded consistently as well.</p>
<p>If you are using any other libraries that use random number generators, refer to
the documentation for those libraries to see how to set consistent seeds for them.</p>
</div>
<div class="section" id="cuda-convolution-benchmarking">
<h3>CUDA convolution benchmarking<a class="headerlink" href="#cuda-convolution-benchmarking" title="Permalink to this heading">¶</a></h3>
<p>The cuDNN library, used by CUDA convolution operations, can be a source of nondeterminism
across multiple executions of an application. When a cuDNN convolution is called with a
new set of size parameters, an optional feature can run multiple convolution algorithms,
benchmarking them to find the fastest one. Then, the fastest algorithm will be used
consistently during the rest of the process for the corresponding set of size parameters.
Due to benchmarking noise and different hardware, the benchmark may select different
algorithms on subsequent runs, even on the same machine.</p>
<p>Disabling the benchmarking feature with <code class="code docutils literal notranslate"><span class="pre">torch.backends.cudnn.benchmark</span> <span class="pre">=</span> <span class="pre">False</span></code>
causes cuDNN to deterministically select an algorithm, possibly at the cost of reduced
performance.</p>
<p>However, if you do not need reproducibility across multiple executions of your application,
then performance might improve if the benchmarking feature is enabled with
<code class="code docutils literal notranslate"><span class="pre">torch.backends.cudnn.benchmark</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p>
<p>Note that this setting is different from the <code class="code docutils literal notranslate"><span class="pre">torch.backends.cudnn.deterministic</span></code>
setting discussed below.</p>
</div>
</div>
<div class="section" id="avoiding-nondeterministic-algorithms">
<h2>Avoiding nondeterministic algorithms<a class="headerlink" href="#avoiding-nondeterministic-algorithms" title="Permalink to this heading">¶</a></h2>
<p><a class="reference internal" href="../generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms" title="torch.use_deterministic_algorithms"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.use_deterministic_algorithms()</span></code></a> lets you configure PyTorch to use
deterministic algorithms instead of nondeterministic ones where available, and
to throw an error if an operation is known to be nondeterministic (and without
a deterministic alternative).</p>
<p>Please check the documentation for <a class="reference internal" href="../generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms" title="torch.use_deterministic_algorithms"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.use_deterministic_algorithms()</span></code></a>
for a full list of affected operations. If an operation does not act correctly
according to the documentation, or if you need a deterministic implementation
of an operation that does not have one, please submit an issue:
<a class="reference external" href="https://github.com/pytorch/pytorch/issues?q=label:%22module:%20determinism%22">https://github.com/pytorch/pytorch/issues?q=label:%22module:%20determinism%22</a></p>
<p>For example, running the nondeterministic CUDA implementation of <a class="reference internal" href="../generated/torch.Tensor.index_add_.html#torch.Tensor.index_add_" title="torch.Tensor.index_add_"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.Tensor.index_add_()</span></code></a>
will throw an error:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>>>> import torch
>>> torch.use_deterministic_algorithms(True)
>>> torch.randn(2, 2).cuda().index_add_(0, torch.tensor([0, 1]), torch.randn(2, 2))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: index_add_cuda_ does not have a deterministic implementation, but you set
'torch.use_deterministic_algorithms(True)'. ...
</pre></div>
</div>
<p>When <a class="reference internal" href="../generated/torch.bmm.html#torch.bmm" title="torch.bmm"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.bmm()</span></code></a> is called with sparse-dense CUDA tensors it typically uses a
nondeterministic algorithm, but when the deterministic flag is turned on, its alternate
deterministic implementation will be used:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">torch</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">use_deterministic_algorithms</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">to_sparse</span><span class="p">()</span><span class="o">.</span><span class="n">cuda</span><span class="p">(),</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">cuda</span><span class="p">())</span>
<span class="go">tensor([[[ 1.1900, -2.3409],</span>
<span class="go"> [ 0.4796, 0.8003]],</span>
<span class="go"> [[ 0.1509, 1.8027],</span>
<span class="go"> [ 0.0333, -1.1444]]], device='cuda:0')</span>
</pre></div>
</div>
<p>Furthermore, if you are using CUDA tensors, and your CUDA version is 10.2 or greater, you
should set the environment variable <cite>CUBLAS_WORKSPACE_CONFIG</cite> according to CUDA documentation:
<a class="reference external" href="https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility">https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility</a></p>
<div class="section" id="cuda-convolution-determinism">
<h3>CUDA convolution determinism<a class="headerlink" href="#cuda-convolution-determinism" title="Permalink to this heading">¶</a></h3>
<p>While disabling CUDA convolution benchmarking (discussed above) ensures that
CUDA selects the same algorithm each time an application is run, that algorithm
itself may be nondeterministic, unless either
<code class="code docutils literal notranslate"><span class="pre">torch.use_deterministic_algorithms(True)</span></code> or
<code class="code docutils literal notranslate"><span class="pre">torch.backends.cudnn.deterministic</span> <span class="pre">=</span> <span class="pre">True</span></code> is set. The latter setting
controls only this behavior, unlike <a class="reference internal" href="../generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms" title="torch.use_deterministic_algorithms"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.use_deterministic_algorithms()</span></code></a>
which will make other PyTorch operations behave deterministically, too.</p>
</div>
<div class="section" id="cuda-rnn-and-lstm">
<h3>CUDA RNN and LSTM<a class="headerlink" href="#cuda-rnn-and-lstm" title="Permalink to this heading">¶</a></h3>
<p>In some versions of CUDA, RNNs and LSTM networks may have non-deterministic behavior.
See <a class="reference internal" href="../generated/torch.nn.RNN.html#torch.nn.RNN" title="torch.nn.RNN"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.nn.RNN()</span></code></a> and <a class="reference internal" href="../generated/torch.nn.LSTM.html#torch.nn.LSTM" title="torch.nn.LSTM"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.nn.LSTM()</span></code></a> for details and workarounds.</p>
</div>
<div class="section" id="filling-uninitialized-memory">
<h3>Filling uninitialized memory<a class="headerlink" href="#filling-uninitialized-memory" title="Permalink to this heading">¶</a></h3>
<p>Operations like <a class="reference internal" href="../generated/torch.empty.html#torch.empty" title="torch.empty"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.empty()</span></code></a> and <a class="reference internal" href="../generated/torch.Tensor.resize_.html#torch.Tensor.resize_" title="torch.Tensor.resize_"><code class="xref py py-meth docutils literal notranslate"><span class="pre">torch.Tensor.resize_()</span></code></a> can return
tensors with uninitialized memory that contain undefined values. Using such a
tensor as an input to another operation is invalid if determinism is required,
because the output will be nondeterministic. But there is nothing to actually
prevent such invalid code from being run. So for safety,
<a class="reference internal" href="../deterministic.html#torch.utils.deterministic.fill_uninitialized_memory" title="torch.utils.deterministic.fill_uninitialized_memory"><code class="xref py py-attr docutils literal notranslate"><span class="pre">torch.utils.deterministic.fill_uninitialized_memory</span></code></a> is set to <code class="docutils literal notranslate"><span class="pre">True</span></code>
by default, which will fill the uninitialized memory with a known value if
<code class="code docutils literal notranslate"><span class="pre">torch.use_deterministic_algorithms(True)</span></code> is set. This will to prevent
the possibility of this kind of nondeterministic behavior.</p>
<p>However, filling uninitialized memory is detrimental to performance. So if your
program is valid and does not use uninitialized memory as the input to an
operation, then this setting can be turned off for better performance.</p>
</div>
</div>
<div class="section" id="dataloader">
<h2>DataLoader<a class="headerlink" href="#dataloader" title="Permalink to this heading">¶</a></h2>
<p>DataLoader will reseed workers following <a class="reference internal" href="../data.html#data-loading-randomness"><span class="std std-ref">Randomness in multi-process data loading</span></a> algorithm.
Use <code class="xref py py-meth docutils literal notranslate"><span class="pre">worker_init_fn()</span></code> and <cite>generator</cite> to preserve reproducibility:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">seed_worker</span><span class="p">(</span><span class="n">worker_id</span><span class="p">):</span>
<span class="n">worker_seed</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">initial_seed</span><span class="p">()</span> <span class="o">%</span> <span class="mi">2</span><span class="o">**</span><span class="mi">32</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="n">worker_seed</span><span class="p">)</span>
<span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="n">worker_seed</span><span class="p">)</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">Generator</span><span class="p">()</span>
<span class="n">g</span><span class="o">.</span><span class="n">manual_seed</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">DataLoader</span><span class="p">(</span>
<span class="n">train_dataset</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="n">num_workers</span><span class="o">=</span><span class="n">num_workers</span><span class="p">,</span>
<span class="n">worker_init_fn</span><span class="o">=</span><span class="n">seed_worker</span><span class="p">,</span>
<span class="n">generator</span><span class="o">=</span><span class="n">g</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="serialization.html" class="btn btn-neutral float-right" title="Serialization semantics" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="numerical_accuracy.html" class="btn btn-neutral" title="Numerical accuracy" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2023, PyTorch Contributors.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
<script>
var match = window.location.href.match(/\/_[a-zA-Z0-9_]*.html|_dynamo/gi);
var url = window.location.href.lastIndexOf(match[match.length-1]);
if (url)
{
var div = '<div class="admonition note"><p class="admonition-title">Note</p><p><i class="fa fa-exclamation-circle" aria-hidden="true"> </i> This page describes an internal API which is not intended to be used outside of the PyTorch codebase and can be modified or removed without notice.</p></div>'
document.getElementById("pytorch-article").insertAdjacentHTML('afterBegin', div)
}
</script>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Reproducibility</a><ul>
<li><a class="reference internal" href="#controlling-sources-of-randomness">Controlling sources of randomness</a><ul>
<li><a class="reference internal" href="#pytorch-random-number-generator">PyTorch random number generator</a></li>
<li><a class="reference internal" href="#python">Python</a></li>
<li><a class="reference internal" href="#random-number-generators-in-other-libraries">Random number generators in other libraries</a></li>
<li><a class="reference internal" href="#cuda-convolution-benchmarking">CUDA convolution benchmarking</a></li>
</ul>
</li>
<li><a class="reference internal" href="#avoiding-nondeterministic-algorithms">Avoiding nondeterministic algorithms</a><ul>
<li><a class="reference internal" href="#cuda-convolution-determinism">CUDA convolution determinism</a></li>
<li><a class="reference internal" href="#cuda-rnn-and-lstm">CUDA RNN and LSTM</a></li>
<li><a class="reference internal" href="#filling-uninitialized-memory">Filling uninitialized memory</a></li>
</ul>
</li>
<li><a class="reference internal" href="#dataloader">DataLoader</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script src="../_static/clipboard.min.js"></script>
<script src="../_static/copybutton.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<script script type="text/javascript">
var collapsedSections = ['Developer Notes', 'Language Bindings', 'Libraries', 'Community'];
</script>
<img height="1" width="1" style="border-style:none;" alt="" src="https://www.googleadservices.com/pagead/conversion/795629140/?label=txkmCPmdtosBENSssfsC&guid=ON&script=0"/>
<!-- Begin Footer -->
<div class="container-fluid docs-tutorials-resources" id="docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="https://pytorch.org/docs/stable/index.html">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="https://pytorch.org/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org/" class="footer-logo"></a>
</div>
<div class="footer-links-wrapper">
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/">PyTorch</a></li>
<li><a href="https://pytorch.org/get-started">Get Started</a></li>
<li><a href="https://pytorch.org/features">Features</a></li>
<li><a href="https://pytorch.org/ecosystem">Ecosystem</a></li>
<li><a href="https://pytorch.org/blog/">Blog</a></li>
<li><a href="https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md">Contributing</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/resources">Resources</a></li>
<li><a href="https://pytorch.org/tutorials">Tutorials</a></li>
<li><a href="https://pytorch.org/docs/stable/index.html">Docs</a></li>
<li><a href="https://discuss.pytorch.org" target="_blank">Discuss</a></li>
<li><a href="https://github.com/pytorch/pytorch/issues" target="_blank">Github Issues</a></li>
<li><a href="https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf" target="_blank">Brand Guidelines</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">Stay up to date</li>
<li><a href="https://www.facebook.com/pytorch" target="_blank">Facebook</a></li>
<li><a href="https://twitter.com/pytorch" target="_blank">Twitter</a></li>
<li><a href="https://www.youtube.com/pytorch" target="_blank">YouTube</a></li>
<li><a href="https://www.linkedin.com/company/pytorch" target="_blank">LinkedIn</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">PyTorch Podcasts</li>
<li><a href="https://open.spotify.com/show/6UzHKeiy368jKfQMKKvJY5" target="_blank">Spotify</a></li>
<li><a href="https://podcasts.apple.com/us/podcast/pytorch-developer-podcast/id1566080008" target="_blank">Apple</a></li>
<li><a href="https://www.google.com/podcasts?feed=aHR0cHM6Ly9mZWVkcy5zaW1wbGVjYXN0LmNvbS9PQjVGa0lsOA%3D%3D" target="_blank">Google</a></li>
<li><a href="https://music.amazon.com/podcasts/7a4e6f0e-26c2-49e9-a478-41bd244197d0/PyTorch-Developer-Podcast?" target="_blank">Amazon</a></li>
</ul>
</div>
</div>
<div class="privacy-policy">
<ul>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/terms/" target="_blank">Terms</a></li>
<li class="privacy-policy-links">|</li>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/privacy-policy/" target="_blank">Privacy</a></li>
</ul>
</div>
<div class="copyright">
<p>© Copyright The Linux Foundation. The PyTorch Foundation is a project of The Linux Foundation.
For web site terms of use, trademark policy and other policies applicable to The PyTorch Foundation please see
<a href="https://www.linuxfoundation.org/policies/">www.linuxfoundation.org/policies/</a>. The PyTorch Foundation supports the PyTorch open source
project, which has been established as PyTorch Project a Series of LF Projects, LLC. For policies applicable to the PyTorch Project a Series of LF Projects, LLC,
please see <a href="https://www.lfprojects.org/policies/">www.lfprojects.org/policies/</a>.</p>
</div>
</div>
</footer>
<div class="cookie-banner-wrapper">
<div class="container">
<p class="gdpr-notice">To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: <a href="https://www.facebook.com/policies/cookies/">Cookies Policy</a>.</p>
<img class="close-button" src="../_static/images/pytorch-x.svg">
</div>
</div>
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="resources-mobile-menu-title" class="active">
Docs
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/docs/stable/index.html">PyTorch</a>
</li>
<li>
<a href="https://pytorch.org/audio/stable/index.html">torchaudio</a>
</li>
<li>
<a href="https://pytorch.org/text/stable/index.html">torchtext</a>
</li>
<li>
<a href="https://pytorch.org/vision/stable/index.html">torchvision</a>
</li>
<li>
<a href="https://pytorch.org/torcharrow">torcharrow</a>
</li>
<li>
<a href="https://pytorch.org/data">TorchData</a>
</li>
<li>
<a href="https://pytorch.org/torchrec">TorchRec</a>
</li>
<li>
<a href="https://pytorch.org/serve/">TorchServe</a>
</li>
<li>
<a href="https://pytorch.org/torchx/">TorchX</a>
</li>
<li>
<a href="https://pytorch.org/xla">PyTorch on XLA Devices</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
Resources
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/features">About</a>
</li>
<li>
<a href="https://pytorch.org/foundation">PyTorch Foundation</a>
</li>
<li>
<a href="https://pytorch.org/#community-module">Community</a>
</li>
<li>
<a href="https://pytorch.org/community-stories">Community Stories</a>
</li>
<li>
<a href="https://pytorch.org/resources">Developer Resources</a>
</li>
<li>
<a href="https://pytorch.org/events">Events</a>
</li>
<li>
<a href="https://discuss.pytorch.org/">Forums</a>
</li>
<li>
<a href="https://pytorch.org/hub">Models (Beta)</a>
</li>
</ul>
<li>
<a href="https://github.com/pytorch/pytorch">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");