-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfunctional.html
2586 lines (2081 loc) · 231 KB
/
functional.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta name="robots" content="noindex">
<meta name="robots" content="noindex">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torch.functional — PyTorch 2.0 documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/_modules/torch/functional.html"/>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/katex-math.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sphinx-dropdown.css" type="text/css" />
<link rel="stylesheet" href="../../_static/panels-bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/jit.css" type="text/css" />
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
<!-- Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-117752657-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-117752657-2');
</script>
<!-- End Google Analytics -->
<script src="../../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active docs-active">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-orange-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/docs/stable/index.html">
<span class="dropdown-title">PyTorch</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/audio/stable/index.html">
<span class="dropdown-title">torchaudio</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/text/stable/index.html">
<span class="dropdown-title">torchtext</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/vision/stable/index.html">
<span class="dropdown-title">torchvision</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torcharrow">
<span class="dropdown-title">torcharrow</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/data">
<span class="dropdown-title">TorchData</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchrec">
<span class="dropdown-title">TorchRec</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/serve/">
<span class="dropdown-title">TorchServe</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchx/">
<span class="dropdown-title">TorchX</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/xla">
<span class="dropdown-title">PyTorch on XLA Devices</span>
<p></p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Resources
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/features">
<span class="dropdown-title">About</span>
<p>Learn about PyTorch’s features and capabilities</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/foundation">
<span class="dropdown-title">PyTorch Foundation</span>
<p>Learn about the PyTorch foundation</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class="dropdown-title">Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/community-stories">
<span class="dropdown-title">Community Stories</span>
<p>Learn how our community solves real, everyday machine learning problems with PyTorch.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class="dropdown-title">Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/events">
<span class="dropdown-title">Events</span>
<p>Find events, webinars, and podcasts</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class="dropdown-title">Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/hub">
<span class="dropdown-title">Models (Beta)</span>
<p>Discover, publish, and reuse pre-trained models</p>
</a>
</div>
</div>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='https://pytorch.org/docs/versions.html'>2.0 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../community/build_ci_governance.html">PyTorch Governance | Build + CI</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../community/design.html">PyTorch Design Philosophy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../community/governance.html">PyTorch Governance | Mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../community/persons_of_interest.html">PyTorch Governance | Maintainers</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../notes/amp_examples.html">CUDA Automatic Mixed Precision examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/cpu_threading_torchscript_inference.html">CPU threading and TorchScript inference</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/cuda.html">CUDA semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/ddp.html">Distributed Data Parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/extending.html">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/extending.func.html">Extending torch.func with autograd.Function</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/gradcheck.html">Gradcheck mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/hip.html">HIP (ROCm) semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/large_scale_deployments.html">Features for large-scale deployments</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/modules.html">Modules</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/mps.html">MPS backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/numerical_accuracy.html">Numerical accuracy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/randomness.html">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../notes/windows.html">Windows FAQ</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">torch.compile</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../dynamo/index.html">TorchDynamo Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dynamo/installation.html">Installing TorchDynamo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dynamo/get-started.html">Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dynamo/guards-overview.html">Guards Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dynamo/custom-backends.html">Custom Backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dynamo/deep-dive.html">TorchDynamo Deeper Dive</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dynamo/troubleshooting.html">TorchDynamo Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dynamo/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../ir.html">IRs</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Language Bindings</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../cpp_index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/javadoc/">Javadoc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../deploy.html">torch::deploy</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../torch.html">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../nn.functional.html">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../tensor_view.html">Tensor Views</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../amp.html">torch.amp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../library.html">torch.library</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../mps.html">torch.mps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../backends.html">torch.backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../distributed.algorithms.join.html">torch.distributed.algorithms.join</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../distributed.elastic.html">torch.distributed.elastic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../fsdp.html">torch.distributed.fsdp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../distributed.optim.html">torch.distributed.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../distributed.tensor.parallel.html">torch.distributed.tensor.parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../distributed.checkpoint.html">torch.distributed.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../_dynamo.html">torch._dynamo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../fft.html">torch.fft</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../func.html">torch.func</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../futures.html">torch.futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../fx.html">torch.fx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../linalg.html">torch.linalg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../monitor.html">torch.monitor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../signal.html">torch.signal</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../special.html">torch.special</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../torch.overrides.html">torch.overrides</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../package.html">torch.package</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../profiler.html">torch.profiler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../nn.init.html">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../onnx_diagnostics.html">torch.onnx diagnostics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../complex_numbers.html">Complex Numbers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../ddp_comm_hooks.html">DDP Communication Hooks</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../pipeline.html">Pipeline Parallelism</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../rpc.html">Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../random.html">torch.random</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../masked.html">torch.masked</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../nested.html">torch.nested</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../testing.html">torch.testing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../benchmark_utils.html">torch.utils.benchmark</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../jit_utils.html">torch.utils.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../mobile_optimizer.html">torch.utils.mobile_optimizer</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../tensorboard.html">torch.utils.tensorboard</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../named_tensor.html">Named Tensors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../name_inference.html">Named Tensors operator coverage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../config_mod.html">torch.__config__</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Libraries</span></p>
<ul>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/audio/stable">torchaudio</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/data">TorchData</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/torchrec">TorchRec</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/serve">TorchServe</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/text/stable">torchtext</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/vision/stable">torchvision</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/xla/">PyTorch on XLA Devices</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../../index.html">
Docs
</a> >
</li>
<li><a href="../index.html">Module code</a> ></li>
<li><a href="../torch.html">torch</a> ></li>
<li>torch.functional</li>
<li class="pytorch-breadcrumbs-aside">
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<h1>Source code for torch.functional</h1><div class="highlight"><pre>
<span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">List</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span>
<span class="p">)</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">from</span> <span class="nn">torch._C</span> <span class="kn">import</span> <span class="n">_add_docstr</span>
<span class="kn">import</span> <span class="nn">torch.backends.opt_einsum</span> <span class="k">as</span> <span class="nn">opt_einsum</span>
<span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
<span class="kn">from</span> <span class="nn">._lowrank</span> <span class="kn">import</span> <span class="n">svd_lowrank</span><span class="p">,</span> <span class="n">pca_lowrank</span>
<span class="kn">from</span> <span class="nn">.overrides</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">has_torch_function</span><span class="p">,</span> <span class="n">has_torch_function_unary</span><span class="p">,</span> <span class="n">has_torch_function_variadic</span><span class="p">,</span>
<span class="n">handle_torch_function</span><span class="p">)</span>
<span class="kn">from</span> <span class="nn">._jit_internal</span> <span class="kn">import</span> <span class="n">boolean_dispatch</span>
<span class="kn">from</span> <span class="nn">._jit_internal</span> <span class="kn">import</span> <span class="n">_overload</span> <span class="k">as</span> <span class="n">overload</span>
<span class="n">Tensor</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span>
<span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">_VF</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
<span class="s1">'atleast_1d'</span><span class="p">,</span>
<span class="s1">'atleast_2d'</span><span class="p">,</span>
<span class="s1">'atleast_3d'</span><span class="p">,</span>
<span class="s1">'align_tensors'</span><span class="p">,</span>
<span class="s1">'broadcast_shapes'</span><span class="p">,</span>
<span class="s1">'broadcast_tensors'</span><span class="p">,</span>
<span class="s1">'cartesian_prod'</span><span class="p">,</span>
<span class="s1">'block_diag'</span><span class="p">,</span>
<span class="s1">'cdist'</span><span class="p">,</span>
<span class="s1">'chain_matmul'</span><span class="p">,</span>
<span class="s1">'einsum'</span><span class="p">,</span>
<span class="s1">'istft'</span><span class="p">,</span>
<span class="s1">'lu'</span><span class="p">,</span>
<span class="s1">'norm'</span><span class="p">,</span>
<span class="s1">'meshgrid'</span><span class="p">,</span>
<span class="s1">'pca_lowrank'</span><span class="p">,</span>
<span class="s1">'split'</span><span class="p">,</span>
<span class="s1">'stft'</span><span class="p">,</span>
<span class="s1">'svd_lowrank'</span><span class="p">,</span>
<span class="s1">'tensordot'</span><span class="p">,</span>
<span class="s1">'unique'</span><span class="p">,</span>
<span class="s1">'unique_consecutive'</span><span class="p">,</span>
<span class="p">]</span>
<div class="viewcode-block" id="broadcast_tensors"><a class="viewcode-back" href="../../generated/torch.broadcast_tensors.html#torch.broadcast_tensors">[docs]</a><span class="k">def</span> <span class="nf">broadcast_tensors</span><span class="p">(</span><span class="o">*</span><span class="n">tensors</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">"""broadcast_tensors(*tensors) -> List of Tensors</span>
<span class="sd"> Broadcasts the given tensors according to :ref:`broadcasting-semantics`.</span>
<span class="sd"> Args:</span>
<span class="sd"> *tensors: any number of tensors of the same type</span>
<span class="sd"> .. warning::</span>
<span class="sd"> More than one element of a broadcasted tensor may refer to a single</span>
<span class="sd"> memory location. As a result, in-place operations (especially ones that</span>
<span class="sd"> are vectorized) may result in incorrect behavior. If you need to write</span>
<span class="sd"> to the tensors, please clone them first.</span>
<span class="sd"> Example::</span>
<span class="sd"> >>> x = torch.arange(3).view(1, 3)</span>
<span class="sd"> >>> y = torch.arange(2).view(2, 1)</span>
<span class="sd"> >>> a, b = torch.broadcast_tensors(x, y)</span>
<span class="sd"> >>> a.size()</span>
<span class="sd"> torch.Size([2, 3])</span>
<span class="sd"> >>> a</span>
<span class="sd"> tensor([[0, 1, 2],</span>
<span class="sd"> [0, 1, 2]])</span>
<span class="sd"> """</span>
<span class="c1"># This wrapper exists to support variadic args.</span>
<span class="k">if</span> <span class="n">has_torch_function</span><span class="p">(</span><span class="n">tensors</span><span class="p">):</span>
<span class="k">return</span> <span class="n">handle_torch_function</span><span class="p">(</span><span class="n">broadcast_tensors</span><span class="p">,</span> <span class="n">tensors</span><span class="p">,</span> <span class="o">*</span><span class="n">tensors</span><span class="p">)</span>
<span class="k">return</span> <span class="n">_VF</span><span class="o">.</span><span class="n">broadcast_tensors</span><span class="p">(</span><span class="n">tensors</span><span class="p">)</span> <span class="c1"># type: ignore[attr-defined]</span></div>
<div class="viewcode-block" id="broadcast_shapes"><a class="viewcode-back" href="../../generated/torch.broadcast_shapes.html#torch.broadcast_shapes">[docs]</a><span class="k">def</span> <span class="nf">broadcast_shapes</span><span class="p">(</span><span class="o">*</span><span class="n">shapes</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">"""broadcast_shapes(*shapes) -> Size</span>
<span class="sd"> Similar to :func:`broadcast_tensors` but for shapes.</span>
<span class="sd"> This is equivalent to</span>
<span class="sd"> ``torch.broadcast_tensors(*map(torch.empty, shapes))[0].shape``</span>
<span class="sd"> but avoids the need create to intermediate tensors. This is useful for</span>
<span class="sd"> broadcasting tensors of common batch shape but different rightmost shape,</span>
<span class="sd"> e.g. to broadcast mean vectors with covariance matrices.</span>
<span class="sd"> Example::</span>
<span class="sd"> >>> torch.broadcast_shapes((2,), (3, 1), (1, 1, 1))</span>
<span class="sd"> torch.Size([1, 3, 2])</span>
<span class="sd"> Args:</span>
<span class="sd"> \*shapes (torch.Size): Shapes of tensors.</span>
<span class="sd"> Returns:</span>
<span class="sd"> shape (torch.Size): A shape compatible with all input shapes.</span>
<span class="sd"> Raises:</span>
<span class="sd"> RuntimeError: If shapes are incompatible.</span>
<span class="sd"> """</span>
<span class="c1"># This wrapper exists to support variadic args.</span>
<span class="c1"># TODO Move this to C++ once the jit has better support for torch.Size.</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">torch</span><span class="o">.</span><span class="n">jit</span><span class="o">.</span><span class="n">is_tracing</span><span class="p">():</span>
<span class="n">max_len</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">shape</span> <span class="ow">in</span> <span class="n">shapes</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">shape</span><span class="p">,</span> <span class="nb">int</span><span class="p">):</span>
<span class="k">if</span> <span class="n">max_len</span> <span class="o"><</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">max_len</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">shape</span><span class="p">,</span> <span class="p">(</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">)):</span>
<span class="n">s</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">shape</span><span class="p">)</span>
<span class="k">if</span> <span class="n">max_len</span> <span class="o"><</span> <span class="n">s</span><span class="p">:</span>
<span class="n">max_len</span> <span class="o">=</span> <span class="n">s</span>
<span class="n">result</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">max_len</span>
<span class="k">for</span> <span class="n">shape</span> <span class="ow">in</span> <span class="n">shapes</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">shape</span><span class="p">,</span> <span class="nb">int</span><span class="p">):</span>
<span class="n">shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">shape</span><span class="p">,)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">shape</span><span class="p">,</span> <span class="p">(</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">)):</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span> <span class="o">-</span> <span class="nb">len</span><span class="p">(</span><span class="n">shape</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">):</span>
<span class="k">if</span> <span class="n">shape</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o"><</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s2">"Trying to create tensor with negative dimension (</span><span class="si">{}</span><span class="s2">): (</span><span class="si">{}</span><span class="s2">)"</span>
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">shape</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">shape</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span>
<span class="k">if</span> <span class="n">shape</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">shape</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="n">result</span><span class="p">[</span><span class="n">i</span><span class="p">]:</span>
<span class="k">continue</span>
<span class="k">if</span> <span class="n">result</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">!=</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s2">"Shape mismatch: objects cannot be broadcast to a single shape"</span><span class="p">)</span>
<span class="n">result</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">shape</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s2">"Input shapes should be of type ints, a tuple of ints, or a list of ints, got "</span><span class="p">,</span> <span class="n">shape</span><span class="p">)</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">Size</span><span class="p">(</span><span class="n">result</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># with implementation above, torch.jit.trace hardcodes the sizes which makes subsequent replays fail</span>
<span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
<span class="n">scalar</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">((),</span> <span class="n">device</span><span class="o">=</span><span class="s2">"cpu"</span><span class="p">)</span>
<span class="n">tensors</span> <span class="o">=</span> <span class="p">[</span><span class="n">scalar</span><span class="o">.</span><span class="n">expand</span><span class="p">(</span><span class="n">shape</span><span class="p">)</span> <span class="k">for</span> <span class="n">shape</span> <span class="ow">in</span> <span class="n">shapes</span><span class="p">]</span>
<span class="n">tensors</span> <span class="o">=</span> <span class="n">broadcast_tensors</span><span class="p">(</span><span class="o">*</span><span class="n">tensors</span><span class="p">)</span>
<span class="k">return</span> <span class="n">tensors</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span></div>
<div class="viewcode-block" id="split"><a class="viewcode-back" href="../../generated/torch.split.html#torch.split">[docs]</a><span class="k">def</span> <span class="nf">split</span><span class="p">(</span>
<span class="n">tensor</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">split_size_or_sections</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span> <span class="n">dim</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span>
<span class="p">)</span> <span class="o">-></span> <span class="n">List</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]:</span>
<span class="sa">r</span><span class="sd">"""Splits the tensor into chunks. Each chunk is a view of the original tensor.</span>
<span class="sd"> If :attr:`split_size_or_sections` is an integer type, then :attr:`tensor` will</span>
<span class="sd"> be split into equally sized chunks (if possible). Last chunk will be smaller if</span>
<span class="sd"> the tensor size along the given dimension :attr:`dim` is not divisible by</span>
<span class="sd"> :attr:`split_size`.</span>
<span class="sd"> If :attr:`split_size_or_sections` is a list, then :attr:`tensor` will be split</span>
<span class="sd"> into ``len(split_size_or_sections)`` chunks with sizes in :attr:`dim` according</span>
<span class="sd"> to :attr:`split_size_or_sections`.</span>
<span class="sd"> Args:</span>
<span class="sd"> tensor (Tensor): tensor to split.</span>
<span class="sd"> split_size_or_sections (int) or (list(int)): size of a single chunk or</span>
<span class="sd"> list of sizes for each chunk</span>
<span class="sd"> dim (int): dimension along which to split the tensor.</span>
<span class="sd"> Example::</span>
<span class="sd"> >>> a = torch.arange(10).reshape(5, 2)</span>
<span class="sd"> >>> a</span>
<span class="sd"> tensor([[0, 1],</span>
<span class="sd"> [2, 3],</span>
<span class="sd"> [4, 5],</span>
<span class="sd"> [6, 7],</span>
<span class="sd"> [8, 9]])</span>
<span class="sd"> >>> torch.split(a, 2)</span>
<span class="sd"> (tensor([[0, 1],</span>
<span class="sd"> [2, 3]]),</span>
<span class="sd"> tensor([[4, 5],</span>
<span class="sd"> [6, 7]]),</span>
<span class="sd"> tensor([[8, 9]]))</span>
<span class="sd"> >>> torch.split(a, [1, 4])</span>
<span class="sd"> (tensor([[0, 1]]),</span>
<span class="sd"> tensor([[2, 3],</span>
<span class="sd"> [4, 5],</span>
<span class="sd"> [6, 7],</span>
<span class="sd"> [8, 9]]))</span>
<span class="sd"> """</span>
<span class="k">if</span> <span class="n">has_torch_function_unary</span><span class="p">(</span><span class="n">tensor</span><span class="p">):</span>
<span class="k">return</span> <span class="n">handle_torch_function</span><span class="p">(</span>
<span class="n">split</span><span class="p">,</span> <span class="p">(</span><span class="n">tensor</span><span class="p">,),</span> <span class="n">tensor</span><span class="p">,</span> <span class="n">split_size_or_sections</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="n">dim</span><span class="p">)</span>
<span class="c1"># Overwriting reason:</span>
<span class="c1"># This dispatches to two ATen functions depending on the type of</span>
<span class="c1"># split_size_or_sections. The branching code is in _tensor.py, which we</span>
<span class="c1"># call here.</span>
<span class="k">return</span> <span class="n">tensor</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">split_size_or_sections</span><span class="p">,</span> <span class="n">dim</span><span class="p">)</span></div>
<div class="viewcode-block" id="einsum"><a class="viewcode-back" href="../../generated/torch.einsum.html#torch.einsum">[docs]</a><span class="k">def</span> <span class="nf">einsum</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-></span> <span class="n">Tensor</span><span class="p">:</span>
<span class="sa">r</span><span class="sd">"""einsum(equation, *operands) -> Tensor</span>
<span class="sd"> Sums the product of the elements of the input :attr:`operands` along dimensions specified using a notation</span>
<span class="sd"> based on the Einstein summation convention.</span>
<span class="sd"> Einsum allows computing many common multi-dimensional linear algebraic array operations by representing them</span>
<span class="sd"> in a short-hand format based on the Einstein summation convention, given by :attr:`equation`. The details of</span>
<span class="sd"> this format are described below, but the general idea is to label every dimension of the input :attr:`operands`</span>
<span class="sd"> with some subscript and define which subscripts are part of the output. The output is then computed by summing</span>
<span class="sd"> the product of the elements of the :attr:`operands` along the dimensions whose subscripts are not part of the</span>
<span class="sd"> output. For example, matrix multiplication can be computed using einsum as `torch.einsum("ij,jk->ik", A, B)`.</span>
<span class="sd"> Here, j is the summation subscript and i and k the output subscripts (see section below for more details on why).</span>
<span class="sd"> Equation:</span>
<span class="sd"> The :attr:`equation` string specifies the subscripts (letters in `[a-zA-Z]`) for each dimension of</span>
<span class="sd"> the input :attr:`operands` in the same order as the dimensions, separating subscripts for each operand by a</span>
<span class="sd"> comma (','), e.g. `'ij,jk'` specify subscripts for two 2D operands. The dimensions labeled with the same subscript</span>
<span class="sd"> must be broadcastable, that is, their size must either match or be `1`. The exception is if a subscript is</span>
<span class="sd"> repeated for the same input operand, in which case the dimensions labeled with this subscript for this operand</span>
<span class="sd"> must match in size and the operand will be replaced by its diagonal along these dimensions. The subscripts that</span>
<span class="sd"> appear exactly once in the :attr:`equation` will be part of the output, sorted in increasing alphabetical order.</span>
<span class="sd"> The output is computed by multiplying the input :attr:`operands` element-wise, with their dimensions aligned based</span>
<span class="sd"> on the subscripts, and then summing out the dimensions whose subscripts are not part of the output.</span>
<span class="sd"> Optionally, the output subscripts can be explicitly defined by adding an arrow ('->') at the end of the equation</span>
<span class="sd"> followed by the subscripts for the output. For instance, the following equation computes the transpose of a</span>
<span class="sd"> matrix multiplication: 'ij,jk->ki'. The output subscripts must appear at least once for some input operand and</span>
<span class="sd"> at most once for the output.</span>
<span class="sd"> Ellipsis ('...') can be used in place of subscripts to broadcast the dimensions covered by the ellipsis.</span>
<span class="sd"> Each input operand may contain at most one ellipsis which will cover the dimensions not covered by subscripts,</span>
<span class="sd"> e.g. for an input operand with 5 dimensions, the ellipsis in the equation `'ab...c'` cover the third and fourth</span>
<span class="sd"> dimensions. The ellipsis does not need to cover the same number of dimensions across the :attr:`operands` but the</span>
<span class="sd"> 'shape' of the ellipsis (the size of the dimensions covered by them) must broadcast together. If the output is not</span>
<span class="sd"> explicitly defined with the arrow ('->') notation, the ellipsis will come first in the output (left-most dimensions),</span>
<span class="sd"> before the subscript labels that appear exactly once for the input operands. e.g. the following equation implements</span>
<span class="sd"> batch matrix multiplication `'...ij,...jk'`.</span>
<span class="sd"> A few final notes: the equation may contain whitespaces between the different elements (subscripts, ellipsis,</span>
<span class="sd"> arrow and comma) but something like `'. . .'` is not valid. An empty string `''` is valid for scalar operands.</span>
<span class="sd"> .. note::</span>
<span class="sd"> ``torch.einsum`` handles ellipsis ('...') differently from NumPy in that it allows dimensions</span>
<span class="sd"> covered by the ellipsis to be summed over, that is, ellipsis are not required to be part of the output.</span>
<span class="sd"> .. note::</span>
<span class="sd"> This function uses opt_einsum (https://optimized-einsum.readthedocs.io/en/stable/) to speed up computation or to</span>
<span class="sd"> consume less memory by optimizing contraction order. This optimization occurs when there are at least three</span>
<span class="sd"> inputs, since the order does not matter otherwise. Note that finding _the_ optimal path is an NP-hard problem,</span>
<span class="sd"> thus, opt_einsum relies on different heuristics to achieve near-optimal results. If opt_einsum is not available,</span>
<span class="sd"> the default order is to contract from left to right.</span>
<span class="sd"> To bypass this default behavior, add the following line to disable the usage of opt_einsum and skip path</span>
<span class="sd"> calculation: `torch.backends.opt_einsum.enabled = False`</span>
<span class="sd"> To specify which strategy you'd like for opt_einsum to compute the contraction path, add the following line:</span>
<span class="sd"> `torch.backends.opt_einsum.strategy = 'auto'`. The default strategy is 'auto', and we also support 'greedy' and</span>
<span class="sd"> 'optimal'. Disclaimer that the runtime of 'optimal' is factorial in the number of inputs! See more details in</span>
<span class="sd"> the opt_einsum documentation (https://optimized-einsum.readthedocs.io/en/stable/path_finding.html).</span>
<span class="sd"> .. note::</span>
<span class="sd"> As of PyTorch 1.10 :func:`torch.einsum` also supports the sublist format (see examples below). In this format,</span>
<span class="sd"> subscripts for each operand are specified by sublists, list of integers in the range [0, 52). These sublists</span>
<span class="sd"> follow their operands, and an extra sublist can appear at the end of the input to specify the output's</span>
<span class="sd"> subscripts., e.g. `torch.einsum(op1, sublist1, op2, sublist2, ..., [subslist_out])`. Python's `Ellipsis` object</span>
<span class="sd"> may be provided in a sublist to enable broadcasting as described in the Equation section above.</span>
<span class="sd"> Args:</span>
<span class="sd"> equation (str): The subscripts for the Einstein summation.</span>
<span class="sd"> operands (List[Tensor]): The tensors to compute the Einstein summation of.</span>
<span class="sd"> Examples::</span>
<span class="sd"> >>> # xdoctest: +IGNORE_WANT("non-deterministic")</span>
<span class="sd"> >>> # trace</span>
<span class="sd"> >>> torch.einsum('ii', torch.randn(4, 4))</span>
<span class="sd"> tensor(-1.2104)</span>
<span class="sd"> >>> # xdoctest: +IGNORE_WANT("non-deterministic")</span>
<span class="sd"> >>> # diagonal</span>
<span class="sd"> >>> torch.einsum('ii->i', torch.randn(4, 4))</span>
<span class="sd"> tensor([-0.1034, 0.7952, -0.2433, 0.4545])</span>
<span class="sd"> >>> # xdoctest: +IGNORE_WANT("non-deterministic")</span>
<span class="sd"> >>> # outer product</span>
<span class="sd"> >>> x = torch.randn(5)</span>
<span class="sd"> >>> y = torch.randn(4)</span>
<span class="sd"> >>> torch.einsum('i,j->ij', x, y)</span>
<span class="sd"> tensor([[ 0.1156, -0.2897, -0.3918, 0.4963],</span>
<span class="sd"> [-0.3744, 0.9381, 1.2685, -1.6070],</span>
<span class="sd"> [ 0.7208, -1.8058, -2.4419, 3.0936],</span>
<span class="sd"> [ 0.1713, -0.4291, -0.5802, 0.7350],</span>
<span class="sd"> [ 0.5704, -1.4290, -1.9323, 2.4480]])</span>
<span class="sd"> >>> # xdoctest: +IGNORE_WANT("non-deterministic")</span>
<span class="sd"> >>> # batch matrix multiplication</span>
<span class="sd"> >>> As = torch.randn(3, 2, 5)</span>
<span class="sd"> >>> Bs = torch.randn(3, 5, 4)</span>
<span class="sd"> >>> torch.einsum('bij,bjk->bik', As, Bs)</span>
<span class="sd"> tensor([[[-1.0564, -1.5904, 3.2023, 3.1271],</span>
<span class="sd"> [-1.6706, -0.8097, -0.8025, -2.1183]],</span>
<span class="sd"> [[ 4.2239, 0.3107, -0.5756, -0.2354],</span>
<span class="sd"> [-1.4558, -0.3460, 1.5087, -0.8530]],</span>
<span class="sd"> [[ 2.8153, 1.8787, -4.3839, -1.2112],</span>
<span class="sd"> [ 0.3728, -2.1131, 0.0921, 0.8305]]])</span>
<span class="sd"> >>> # xdoctest: +IGNORE_WANT("non-deterministic")</span>
<span class="sd"> >>> # with sublist format and ellipsis</span>
<span class="sd"> >>> torch.einsum(As, [..., 0, 1], Bs, [..., 1, 2], [..., 0, 2])</span>
<span class="sd"> tensor([[[-1.0564, -1.5904, 3.2023, 3.1271],</span>
<span class="sd"> [-1.6706, -0.8097, -0.8025, -2.1183]],</span>
<span class="sd"> [[ 4.2239, 0.3107, -0.5756, -0.2354],</span>
<span class="sd"> [-1.4558, -0.3460, 1.5087, -0.8530]],</span>
<span class="sd"> [[ 2.8153, 1.8787, -4.3839, -1.2112],</span>
<span class="sd"> [ 0.3728, -2.1131, 0.0921, 0.8305]]])</span>
<span class="sd"> >>> # batch permute</span>
<span class="sd"> >>> A = torch.randn(2, 3, 4, 5)</span>
<span class="sd"> >>> torch.einsum('...ij->...ji', A).shape</span>
<span class="sd"> torch.Size([2, 3, 5, 4])</span>
<span class="sd"> >>> # equivalent to torch.nn.functional.bilinear</span>
<span class="sd"> >>> A = torch.randn(3, 5, 4)</span>
<span class="sd"> >>> l = torch.randn(2, 5)</span>
<span class="sd"> >>> r = torch.randn(2, 4)</span>
<span class="sd"> >>> torch.einsum('bn,anm,bm->ba', l, A, r)</span>
<span class="sd"> tensor([[-0.3430, -5.2405, 0.4494],</span>
<span class="sd"> [ 0.3311, 5.5201, -3.0356]])</span>
<span class="sd"> """</span>
<span class="c1"># This wrapper exists to support variadic args.</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">)</span> <span class="o"><</span> <span class="mi">2</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'einsum(): must specify the equation string and at least one operand, '</span>
<span class="s1">'or at least one operand and its subscripts list'</span><span class="p">)</span>
<span class="n">equation</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">operands</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">args</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
<span class="c1"># Convert the subscript list format which is an interleaving of operand and its subscripts</span>
<span class="c1"># list with an optional output subscripts list at the end (see documentation for more details on this)</span>
<span class="c1"># to the equation string format by creating the equation string from the subscripts list and grouping the</span>
<span class="c1"># input operands into a tensorlist (List[Tensor]).</span>
<span class="k">def</span> <span class="nf">parse_subscript</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span>
<span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="bp">Ellipsis</span><span class="p">:</span>
<span class="k">return</span> <span class="s1">'...'</span>
<span class="k">if</span> <span class="n">n</span> <span class="o">>=</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">n</span> <span class="o"><</span> <span class="mi">26</span><span class="p">:</span>
<span class="k">return</span> <span class="nb">chr</span><span class="p">(</span><span class="nb">ord</span><span class="p">(</span><span class="s1">'A'</span><span class="p">)</span> <span class="o">+</span> <span class="n">n</span><span class="p">)</span>
<span class="k">if</span> <span class="n">n</span> <span class="o">>=</span> <span class="mi">26</span> <span class="ow">and</span> <span class="n">n</span> <span class="o"><</span> <span class="mi">52</span><span class="p">:</span>
<span class="k">return</span> <span class="nb">chr</span><span class="p">(</span><span class="nb">ord</span><span class="p">(</span><span class="s1">'a'</span><span class="p">)</span> <span class="o">+</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">26</span><span class="p">)</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'einsum(): subscript in subscript list is not within the valid range [0, 52)'</span><span class="p">)</span>
<span class="c1"># Parse subscripts for input operands</span>
<span class="n">equation</span> <span class="o">=</span> <span class="s1">','</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="s1">''</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">parse_subscript</span><span class="p">(</span><span class="n">s</span><span class="p">)</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">l</span><span class="p">)</span> <span class="k">for</span> <span class="n">l</span> <span class="ow">in</span> <span class="n">args</span><span class="p">[</span><span class="mi">1</span><span class="p">::</span><span class="mi">2</span><span class="p">])</span>
<span class="c1"># Parse optional output subscripts (provided when the number of arguments is odd)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">args</span><span class="p">)</span> <span class="o">%</span> <span class="mi">2</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">equation</span> <span class="o">+=</span> <span class="s1">'->'</span> <span class="o">+</span> <span class="s1">''</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">parse_subscript</span><span class="p">(</span><span class="n">s</span><span class="p">)</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">args</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">operands</span> <span class="o">=</span> <span class="n">args</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">:</span><span class="mi">2</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">operands</span> <span class="o">=</span> <span class="n">args</span><span class="p">[::</span><span class="mi">2</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">equation</span> <span class="o">=</span> <span class="n">args</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">operands</span> <span class="o">=</span> <span class="n">args</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span>
<span class="k">if</span> <span class="n">has_torch_function</span><span class="p">(</span><span class="n">operands</span><span class="p">):</span>
<span class="k">return</span> <span class="n">handle_torch_function</span><span class="p">(</span><span class="n">einsum</span><span class="p">,</span> <span class="n">operands</span><span class="p">,</span> <span class="n">equation</span><span class="p">,</span> <span class="o">*</span><span class="n">operands</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">operands</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">operands</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span>
<span class="c1"># the old interface of passing the operands as one list argument</span>
<span class="n">_operands</span> <span class="o">=</span> <span class="n">operands</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="c1"># recurse incase operands contains value that has torch function</span>
<span class="c1"># in the original implementation this line is omitted</span>
<span class="k">return</span> <span class="n">einsum</span><span class="p">(</span><span class="n">equation</span><span class="p">,</span> <span class="o">*</span><span class="n">_operands</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">operands</span><span class="p">)</span> <span class="o"><=</span> <span class="mi">2</span> <span class="ow">or</span> <span class="ow">not</span> <span class="n">opt_einsum</span><span class="o">.</span><span class="n">enabled</span><span class="p">:</span>
<span class="c1"># the path for contracting 0 or 1 time(s) is already optimized</span>
<span class="c1"># or the user has disabled using opt_einsum</span>
<span class="k">return</span> <span class="n">_VF</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="n">equation</span><span class="p">,</span> <span class="n">operands</span><span class="p">)</span> <span class="c1"># type: ignore[attr-defined]</span>
<span class="n">path</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">opt_einsum</span><span class="o">.</span><span class="n">is_available</span><span class="p">():</span>
<span class="n">_opt_einsum</span> <span class="o">=</span> <span class="n">opt_einsum</span><span class="o">.</span><span class="n">get_opt_einsum</span><span class="p">()</span>
<span class="n">tupled_path</span> <span class="o">=</span> <span class="n">_opt_einsum</span><span class="o">.</span><span class="n">contract_path</span><span class="p">(</span><span class="n">equation</span><span class="p">,</span> <span class="o">*</span><span class="n">operands</span><span class="p">,</span> <span class="n">optimize</span><span class="o">=</span><span class="n">opt_einsum</span><span class="o">.</span><span class="n">strategy</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
<span class="c1"># flatten path for dispatching to C++</span>
<span class="n">path</span> <span class="o">=</span> <span class="p">[</span><span class="n">item</span> <span class="k">for</span> <span class="n">pair</span> <span class="ow">in</span> <span class="n">tupled_path</span> <span class="k">for</span> <span class="n">item</span> <span class="ow">in</span> <span class="n">pair</span><span class="p">]</span>
<span class="k">return</span> <span class="n">_VF</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="n">equation</span><span class="p">,</span> <span class="n">operands</span><span class="p">,</span> <span class="n">path</span><span class="o">=</span><span class="n">path</span><span class="p">)</span> <span class="c1"># type: ignore[attr-defined]</span></div>
<span class="c1"># This wrapper exists to support variadic args.</span>
<span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="c1"># The JIT doesn't understand Union, so only add type annotation for mypy</span>
<span class="k">def</span> <span class="nf">meshgrid</span><span class="p">(</span><span class="o">*</span><span class="n">tensors</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">List</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]],</span>
<span class="n">indexing</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-></span> <span class="n">Tuple</span><span class="p">[</span><span class="n">Tensor</span><span class="p">,</span> <span class="o">...</span><span class="p">]:</span>
<span class="k">return</span> <span class="n">_meshgrid</span><span class="p">(</span><span class="o">*</span><span class="n">tensors</span><span class="p">,</span> <span class="n">indexing</span><span class="o">=</span><span class="n">indexing</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<div class="viewcode-block" id="meshgrid"><a class="viewcode-back" href="../../generated/torch.meshgrid.html#torch.meshgrid">[docs]</a> <span class="k">def</span> <span class="nf">meshgrid</span><span class="p">(</span><span class="o">*</span><span class="n">tensors</span><span class="p">,</span> <span class="n">indexing</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-></span> <span class="n">Tuple</span><span class="p">[</span><span class="n">Tensor</span><span class="p">,</span> <span class="o">...</span><span class="p">]:</span>
<span class="sa">r</span><span class="sd">"""Creates grids of coordinates specified by the 1D inputs in `attr`:tensors.</span>
<span class="sd"> This is helpful when you want to visualize data over some</span>
<span class="sd"> range of inputs. See below for a plotting example.</span>
<span class="sd"> Given :math:`N` 1D tensors :math:`T_0 \ldots T_{N-1}` as</span>
<span class="sd"> inputs with corresponding sizes :math:`S_0 \ldots S_{N-1}`,</span>
<span class="sd"> this creates :math:`N` N-dimensional tensors :math:`G_0 \ldots</span>
<span class="sd"> G_{N-1}`, each with shape :math:`(S_0, ..., S_{N-1})` where</span>
<span class="sd"> the output :math:`G_i` is constructed by expanding :math:`T_i`</span>
<span class="sd"> to the result shape.</span>
<span class="sd"> .. note::</span>
<span class="sd"> 0D inputs are treated equivalently to 1D inputs of a</span>
<span class="sd"> single element.</span>
<span class="sd"> .. warning::</span>
<span class="sd"> `torch.meshgrid(*tensors)` currently has the same behavior</span>
<span class="sd"> as calling `numpy.meshgrid(*arrays, indexing='ij')`.</span>
<span class="sd"> In the future `torch.meshgrid` will transition to</span>
<span class="sd"> `indexing='xy'` as the default.</span>
<span class="sd"> https://github.com/pytorch/pytorch/issues/50276 tracks</span>
<span class="sd"> this issue with the goal of migrating to NumPy's behavior.</span>
<span class="sd"> .. seealso::</span>
<span class="sd"> :func:`torch.cartesian_prod` has the same effect but it</span>
<span class="sd"> collects the data in a tensor of vectors.</span>
<span class="sd"> Args:</span>
<span class="sd"> tensors (list of Tensor): list of scalars or 1 dimensional tensors. Scalars will be</span>
<span class="sd"> treated as tensors of size :math:`(1,)` automatically</span>
<span class="sd"> indexing: (str, optional): the indexing mode, either "xy"</span>
<span class="sd"> or "ij", defaults to "ij". See warning for future changes.</span>
<span class="sd"> If "xy" is selected, the first dimension corresponds</span>
<span class="sd"> to the cardinality of the second input and the second</span>
<span class="sd"> dimension corresponds to the cardinality of the first</span>
<span class="sd"> input.</span>
<span class="sd"> If "ij" is selected, the dimensions are in the same</span>
<span class="sd"> order as the cardinality of the inputs.</span>
<span class="sd"> Returns:</span>
<span class="sd"> seq (sequence of Tensors): If the input has :math:`N`</span>
<span class="sd"> tensors of size :math:`S_0 \ldots S_{N-1}``, then the</span>
<span class="sd"> output will also have :math:`N` tensors, where each tensor</span>
<span class="sd"> is of shape :math:`(S_0, ..., S_{N-1})`.</span>
<span class="sd"> Example::</span>
<span class="sd"> >>> x = torch.tensor([1, 2, 3])</span>
<span class="sd"> >>> y = torch.tensor([4, 5, 6])</span>
<span class="sd"> Observe the element-wise pairings across the grid, (1, 4),</span>
<span class="sd"> (1, 5), ..., (3, 6). This is the same thing as the</span>
<span class="sd"> cartesian product.</span>
<span class="sd"> >>> grid_x, grid_y = torch.meshgrid(x, y, indexing='ij')</span>
<span class="sd"> >>> grid_x</span>
<span class="sd"> tensor([[1, 1, 1],</span>
<span class="sd"> [2, 2, 2],</span>
<span class="sd"> [3, 3, 3]])</span>
<span class="sd"> >>> grid_y</span>
<span class="sd"> tensor([[4, 5, 6],</span>
<span class="sd"> [4, 5, 6],</span>
<span class="sd"> [4, 5, 6]])</span>
<span class="sd"> This correspondence can be seen when these grids are</span>
<span class="sd"> stacked properly.</span>
<span class="sd"> >>> torch.equal(torch.cat(tuple(torch.dstack([grid_x, grid_y]))),</span>
<span class="sd"> ... torch.cartesian_prod(x, y))</span>
<span class="sd"> True</span>
<span class="sd"> `torch.meshgrid` is commonly used to produce a grid for</span>
<span class="sd"> plotting.</span>
<span class="sd"> >>> # xdoctest: +REQUIRES(module:matplotlib)</span>
<span class="sd"> >>> import matplotlib.pyplot as plt</span>
<span class="sd"> >>> xs = torch.linspace(-5, 5, steps=100)</span>
<span class="sd"> >>> ys = torch.linspace(-5, 5, steps=100)</span>
<span class="sd"> >>> x, y = torch.meshgrid(xs, ys, indexing='xy')</span>
<span class="sd"> >>> z = torch.sin(torch.sqrt(x * x + y * y))</span>
<span class="sd"> >>> ax = plt.axes(projection='3d')</span>
<span class="sd"> >>> ax.plot_surface(x.numpy(), y.numpy(), z.numpy())</span>
<span class="sd"> >>> plt.show()</span>
<span class="sd"> .. image:: ../_static/img/meshgrid.png</span>
<span class="sd"> :width: 512</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">_meshgrid</span><span class="p">(</span><span class="o">*</span><span class="n">tensors</span><span class="p">,</span> <span class="n">indexing</span><span class="o">=</span><span class="n">indexing</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">_meshgrid</span><span class="p">(</span><span class="o">*</span><span class="n">tensors</span><span class="p">,</span> <span class="n">indexing</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]):</span>
<span class="k">if</span> <span class="n">has_torch_function</span><span class="p">(</span><span class="n">tensors</span><span class="p">):</span>
<span class="k">return</span> <span class="n">handle_torch_function</span><span class="p">(</span><span class="n">meshgrid</span><span class="p">,</span> <span class="n">tensors</span><span class="p">,</span> <span class="o">*</span><span class="n">tensors</span><span class="p">,</span> <span class="n">indexing</span><span class="o">=</span><span class="n">indexing</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">tensors</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">tensors</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)):</span>
<span class="c1"># the old interface of passing the operands as one list argument</span>
<span class="n">tensors</span> <span class="o">=</span> <span class="n">tensors</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="c1"># type: ignore[assignment]</span>
<span class="c1"># Continue allowing call of old method that takes no indexing</span>
<span class="c1"># kwarg for forward compatibility reasons.</span>
<span class="c1">#</span>
<span class="c1"># Remove this two weeks after landing.</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="p">{}</span> <span class="k">if</span> <span class="n">indexing</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="p">{</span><span class="s1">'indexing'</span><span class="p">:</span> <span class="n">indexing</span><span class="p">}</span>
<span class="k">return</span> <span class="n">_VF</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">tensors</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <span class="c1"># type: ignore[attr-defined]</span>
<div class="viewcode-block" id="stft"><a class="viewcode-back" href="../../generated/torch.stft.html#torch.stft">[docs]</a><span class="k">def</span> <span class="nf">stft</span><span class="p">(</span><span class="nb">input</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">n_fft</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">hop_length</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">win_length</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">window</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">center</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> <span class="n">pad_mode</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">'reflect'</span><span class="p">,</span> <span class="n">normalized</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">onesided</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">return_complex</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-></span> <span class="n">Tensor</span><span class="p">:</span>
<span class="sa">r</span><span class="sd">"""Short-time Fourier transform (STFT).</span>
<span class="sd"> .. warning::</span>
<span class="sd"> From version 1.8.0, :attr:`return_complex` must always be given</span>
<span class="sd"> explicitly for real inputs and `return_complex=False` has been</span>
<span class="sd"> deprecated. Strongly prefer `return_complex=True` as in a future</span>
<span class="sd"> pytorch release, this function will only return complex tensors.</span>
<span class="sd"> Note that :func:`torch.view_as_real` can be used to recover a real</span>
<span class="sd"> tensor with an extra last dimension for real and imaginary components.</span>
<span class="sd"> The STFT computes the Fourier transform of short overlapping windows of the</span>
<span class="sd"> input. This giving frequency components of the signal as they change over</span>
<span class="sd"> time. The interface of this function is modeled after (but *not* a drop-in</span>
<span class="sd"> replacement for) librosa_ stft function.</span>
<span class="sd"> .. _librosa: https://librosa.org/doc/latest/generated/librosa.stft.html</span>
<span class="sd"> Ignoring the optional batch dimension, this method computes the following</span>
<span class="sd"> expression:</span>
<span class="sd"> .. math::</span>
<span class="sd"> X[\omega, m] = \sum_{k = 0}^{\text{win\_length-1}}%</span>
<span class="sd"> \text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ %</span>
<span class="sd"> \exp\left(- j \frac{2 \pi \cdot \omega k}{\text{win\_length}}\right),</span>
<span class="sd"> where :math:`m` is the index of the sliding window, and :math:`\omega` is</span>
<span class="sd"> the frequency :math:`0 \leq \omega < \text{n\_fft}` for ``onesided=False``,</span>
<span class="sd"> or :math:`0 \leq \omega < \lfloor \text{n\_fft} / 2 \rfloor + 1` for ``onesided=True``.</span>
<span class="sd"> * :attr:`input` must be either a 1-D time sequence or a 2-D batch of time</span>
<span class="sd"> sequences.</span>