-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathplot_singlediode.py
148 lines (132 loc) · 4.38 KB
/
plot_singlediode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""
Calculating a module's IV curves
================================
Examples of modeling IV curves using a single-diode circuit equivalent model.
"""
# %%
# Calculating a module IV curve for certain operating conditions is a two-step
# process. Multiple methods exist for both parts of the process. Here we use
# the De Soto model [1]_ to calculate the electrical parameters for an IV
# curve at a certain irradiance and temperature using the module's
# base characteristics at reference conditions. Those parameters are then used
# to calculate the module's IV curve by solving the single-diode equation using
# the Lambert W method.
#
# The single-diode equation is a circuit-equivalent model of a PV
# cell and has five electrical parameters that depend on the operating
# conditions. For more details on the single-diode equation and the five
# parameters, see the `PVPMC single diode page
# <https://pvpmc.sandia.gov/modeling-steps/2-dc-module-iv/single-diode-equivalent-circuit-models/>`_.
#
# References
# ----------
# .. [1] W. De Soto et al., "Improvement and validation of a model for
# photovoltaic array performance", Solar Energy, vol 80, pp. 78-88, 2006.
#
# Calculating IV Curves
# -----------------------
# This example uses :py:meth:`pvlib.pvsystem.calcparams_desoto` to calculate
# the 5 electrical parameters needed to solve the single-diode equation.
# :py:meth:`pvlib.pvsystem.singlediode` and :py:meth:`pvlib.pvsystem.i_from_v`
# are used to generate the IV curves.
from pvlib import pvsystem
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Example module parameters for the Canadian Solar CS5P-220M:
parameters = {
'Name': 'Canadian Solar CS5P-220M',
'BIPV': 'N',
'Date': '10/5/2009',
'T_NOCT': 42.4,
'A_c': 1.7,
'N_s': 96,
'I_sc_ref': 5.1,
'V_oc_ref': 59.4,
'I_mp_ref': 4.69,
'V_mp_ref': 46.9,
'alpha_sc': 0.004539,
'beta_oc': -0.22216,
'a_ref': 2.6373,
'I_L_ref': 5.114,
'I_o_ref': 8.196e-10,
'R_s': 1.065,
'R_sh_ref': 381.68,
'Adjust': 8.7,
'gamma_r': -0.476,
'Version': 'MM106',
'PTC': 200.1,
'Technology': 'Mono-c-Si',
}
cases = [
(1000, 55),
(800, 55),
(600, 55),
(400, 25),
(400, 40),
(400, 55)
]
conditions = pd.DataFrame(cases, columns=['Geff', 'Tcell'])
# adjust the reference parameters according to the operating
# conditions using the De Soto model:
IL, I0, Rs, Rsh, nNsVth = pvsystem.calcparams_desoto(
conditions['Geff'],
conditions['Tcell'],
alpha_sc=parameters['alpha_sc'],
a_ref=parameters['a_ref'],
I_L_ref=parameters['I_L_ref'],
I_o_ref=parameters['I_o_ref'],
R_sh_ref=parameters['R_sh_ref'],
R_s=parameters['R_s'],
EgRef=1.121,
dEgdT=-0.0002677
)
# plug the parameters into the SDE and solve for IV curves:
SDE_params = {
'photocurrent': IL,
'saturation_current': I0,
'resistance_series': Rs,
'resistance_shunt': Rsh,
'nNsVth': nNsVth
}
curve_info = pvsystem.singlediode(method='lambertw', **SDE_params)
v = pd.DataFrame(np.linspace(0., curve_info['v_oc'], 100))
i = pd.DataFrame(pvsystem.i_from_v(voltage=v, method='lambertw', **SDE_params))
# plot the calculated curves:
plt.figure()
for idx, case in conditions.iterrows():
label = (
"$G_{eff}$ " + f"{case['Geff']} $W/m^2$\n"
"$T_{cell}$ " + f"{case['Tcell']} $\\degree C$"
)
plt.plot(v[idx], i[idx], label=label)
v_mp = curve_info['v_mp'][idx]
i_mp = curve_info['i_mp'][idx]
# mark the MPP
plt.plot([v_mp], [i_mp], ls='', marker='o', c='k')
plt.xlim(left=0)
plt.ylim(bottom=0)
plt.legend(loc=(1.0, 0))
plt.xlabel('Module voltage [V]')
plt.ylabel('Module current [A]')
plt.title(parameters['Name'])
plt.gcf().set_tight_layout(True)
# draw trend arrows
def draw_arrow(ax, label, x0, y0, rotation, size, direction):
style = direction + 'arrow'
bbox_props = dict(boxstyle=style, fc=(0.8, 0.9, 0.9), ec="b", lw=1)
t = ax.text(x0, y0, label, ha="left", va="bottom", rotation=rotation,
size=size, bbox=bbox_props, zorder=-1)
bb = t.get_bbox_patch()
bb.set_boxstyle(style, pad=0.6)
ax = plt.gca()
draw_arrow(ax, 'Irradiance', 20, 2.5, 90, 15, 'r')
draw_arrow(ax, 'Temperature', 35, 1, 0, 15, 'l')
plt.show()
print(pd.DataFrame({
'i_sc': curve_info['i_sc'],
'v_oc': curve_info['v_oc'],
'i_mp': curve_info['i_mp'],
'v_mp': curve_info['v_mp'],
'p_mp': curve_info['p_mp'],
}))