-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLocalSensitivity.hs
967 lines (898 loc) · 38.9 KB
/
LocalSensitivity.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
module LocalSensitivity (performLocalSensitivityAnalysis) where
import Control.Monad
import qualified Data.Map as Map
import qualified Data.Text as T
import Data.Map (Map)
import Data.Array.IArray
import Data.Array.Unboxed
import Data.Array.MArray
import Data.Array.IO
import Data.IORef
import Data.Char
import Data.Either
import Data.Maybe
import Data.List
import Debug.Trace
import Text.Printf
import Database.HsSqlPpp.Catalog
import Database.HsSqlPpp.Syntax
import SelectQuery
type Table = [[Int]]
type Database = [Table]
-- type of derivatives
type DerT = Double
table1 = [
[100, 1],
[100, 2],
[101, 2]]
table2 = [
[100, 1],
[101, 2],
[101, 3],
[101, 5],
[102, 4]]
table3 = [[i, 10*i] | i <- [1..100]]
table4 = [[i, 10*i+1] | i <- [3..110]]
dbTables = Map.fromList [
("t1", table1),
("t2", table2),
("t2copy", table2),
("t3", table3),
("t3copy", table3),
("t4", table4)]
sumExprBound = 1000
data NoiseParameters =
NoiseParameters {
noise_epsilon :: Double,
noise_b2 :: Double -- must be in the interval (0,1)
}
noise_b1 :: NoiseParameters -> Double
noise_b1 np = 1 - noise_b2 np
data NoiseDistribution =
NoiseDistribution {
distrBeta :: NoiseParameters -> Double, -- for smooth sensitivity
distrSmNlm :: NoiseParameters -> Double, -- for smooth sensitivity
distrC1 :: Double,
distrC2 :: Double,
distrQuantiles :: [Double] -> [Double]
}
noise_Laplace noise_Laplace_delta =
NoiseDistribution {
distrBeta = \ np -> noise_b1 np * noise_epsilon np / (noise_Laplace_k - 1),
--distrBeta = noise_epsilon / (2 * log (2 / noise_Laplace_delta)),
--distrBeta = noise_epsilon / (2 * (log (2 / noise_Laplace_delta) - noise_epsilon)),
--distrSmNlm = 2 / noise_epsilon,
distrSmNlm = \ np -> 1 / (noise_b2 np * noise_epsilon np),
distrC1 = noise_Laplace_C1,
distrC2 = noise_Laplace_C2,
distrQuantiles = map nqL
}
where
noise_Laplace_k = - log noise_Laplace_delta
noise_Laplace_C1 = noise_Laplace_k - 1
noise_Laplace_C2 = 1.0
-- quantiles of the absolute value of added noise
nqL p = - log (1 - p)
noise_Cauchy =
NoiseDistribution {
distrBeta = \ np -> noise_b1 np * noise_epsilon np / (noise_Cauchy_gamma + 1),
distrSmNlm = \ np -> (noise_Cauchy_gamma + 1) / (noise_b2 np * noise_epsilon np),
distrC1 = noise_Cauchy_C1,
distrC2 = noise_Cauchy_C2,
distrQuantiles = map nqC
}
where
noise_Cauchy_gamma = 2.0
noise_Cauchy_C1 = 1 + noise_Cauchy_gamma
noise_Cauchy_C2 = 1 + noise_Cauchy_gamma
nqC p = tan (0.5 * pi * p)
noise_GenCauchy noise_Cauchy_gamma =
NoiseDistribution {
distrBeta = \ np -> noise_b1 np * noise_epsilon np / (noise_Cauchy_gamma + 1),
distrSmNlm = \ np -> (noise_Cauchy_gamma + 1) / (noise_b2 np * noise_epsilon np),
distrC1 = noise_Cauchy_C1,
distrC2 = noise_Cauchy_C2,
distrQuantiles = compute_generalized_Cauchy_distribution_quantiles noise_Cauchy_gamma
}
where
noise_Cauchy_C1 = 1 + noise_Cauchy_gamma
noise_Cauchy_C2 = 1 + noise_Cauchy_gamma
noise_distributions = [noise_GenCauchy 10.0, noise_GenCauchy 4.0, noise_GenCauchy 3.0, noise_Cauchy, noise_Laplace 1.0e-5, noise_Laplace 1.0e-10]
--noise_epsilon = 1.0
--noise_b2 = 0.5 -- must be in the interval (0,1)
--noise_b1 = 1 - noise_b2
prefixSum :: (Num a) => [a] -> [a]
prefixSum = f 0 where
f s [] = [s]
f s (x : xs) = s : f (s + x) xs
crossProd :: [[a]] -> [[a]]
crossProd [] = [[]]
crossProd (xs:yss) = [x : ys | x <- xs, ys <- crossProd yss]
combins :: Int -> [a] -> [[a]]
combins k xs = f (length xs) k xs where
f _ 0 _ = [[]]
f n k ~(x : xs)
| n >= k = f (n-1) k xs ++ (map (x :) $ f (n-1) (k-1) xs)
| otherwise = []
subsets :: [a] -> [[a]]
subsets [] = [[]]
subsets (x : xs) = let ss = subsets xs in ss ++ (map (x :) ss)
permuts xs = f (length xs) xs where
insert x 0 ys = x : ys
insert x k (y:ys) = y : insert x (k-1) ys
f 0 [] = [[]]
f n (x:xs) = [insert x k p | p <- f (n-1) xs, k <- [0..n-1]]
-- A pattern is either the null pattern or a list of nonnegative integers where 0 matches any positive integer
-- e.g. [2,0,3,0] matches all lists [2,i,3,j] where i and j are any positive integers
-- The null pattern does not match anything
-- The zero pattern is a list whose all elements are 0, i.e. it matches everything
-- We define the partial order on patterns as the subset relation on the sets they match,
-- i.e. the null pattern is the smallest and the zero pattern is the largest
-- The intersection of a set of patterns P matches the lists matched by all patterns in P
-- A pattern map is mapping from a set of patterns to integers
-- A closed pattern set is a set of patterns P such that P+{null pattern} is closed under intersection and P contains the zero pattern
-- A closed pattern map is a mapping from a closed pattern set to integers
-- We merge two closed pattern maps cpm1 and cpm2 to get a new closed pattern map cpm such that
-- if p is the intersection of a pattern mapped by cpm1 and a pattern mapped by cpm2 then
-- cpm(p) = cpm1(p1) + cpm2(p2) | p <= p1 & p <= p2}
-- where p1 is the intersection of all patterns p1 mapped by cpm1 such that p <= p1
-- (i.e. the smallest pattern p1 mapped by cpm1 such that p <= p1)
-- and p2 is the intersection of all patterns p2 mapped by cpm2 such that p <= p2
-- (i.e. the smallest pattern p2 mapped by cpm2 such that p <= p2)
-- The arguments to mergeCpms are given as sorted association lists
mergeCpms :: [([Int],[DerT])] -> [([Int],[DerT])] -> [([Int],[DerT])]
mergeCpms [] cpm = cpm
mergeCpms cpm [] = cpm
mergeCpms [([],n1)] [([],n2)] = [([], zipWith (+) n1 n2)]
mergeCpms cpm1 cpm2 = -- trace (printf "mergeCpms %s %s" (show cpm1) (show cpm2)) $
let
mgb = map (\ xs -> (head (fst (head xs)), map (\ (ys,n) -> (tail ys, n)) xs)) . groupBy (\ x y -> head (fst x) == head (fst y))
mgb1 = mgb cpm1
mgb2 = mgb cpm2
(c10,m1) =
case mgb1 of
(0,cpm):mgb -> (cpm, mgb)
_ -> ([], mgb1)
(c20,m2) =
case mgb2 of
(0,cpm):mgb -> (cpm, mgb)
_ -> ([], mgb2)
mapfun (ys,n) = (0:ys, n)
cpm0 = map mapfun $ mergeCpms c10 c20
f [] [] = []
f [] ((x,cpm2):m2) =
let
mapfun (ys,n) = (x:ys, n)
in
map mapfun (mergeCpms c10 cpm2) ++ f [] m2
f ((x,cpm1):m1) [] =
let
mapfun (ys,n) = (x:ys, n)
in
map mapfun (mergeCpms cpm1 c20) ++ f m1 []
f m1f@((x1,cpm1):m1) m2f@((x2,cpm2):m2) =
let
x = min x1 x2
mapfun (ys,n) = (x:ys, n)
in
case compare x1 x2 of
EQ -> map mapfun (mergeCpms cpm1 cpm2) ++ f m1 m2
LT -> map mapfun (mergeCpms cpm1 c20) ++ f m1 m2f
GT -> map mapfun (mergeCpms c10 cpm2) ++ f m1f m2
in
cpm0 ++ f m1 m2
mergeManyCpms :: [[([Int],[DerT])]] -> [([Int],[DerT])]
mergeManyCpms [] = []
mergeManyCpms [cpm] = cpm
mergeManyCpms cpms =
let
(cpms1,cpms2) = splitAt (length cpms `div` 2) cpms
in
mergeCpms (mergeManyCpms cpms1) (mergeManyCpms cpms2)
patternIntersection :: Maybe [Int] -> Maybe [Int] -> Maybe [Int]
patternIntersection Nothing _ = Nothing
patternIntersection _ Nothing = Nothing
patternIntersection (Just p1) (Just p2) = patternIntersection' p1 p2
patternIntersection' :: [Int] -> [Int] -> Maybe [Int]
patternIntersection' [] [] = Just []
patternIntersection' (0 : xs) (y : ys) = (y :) <$> patternIntersection' xs ys
patternIntersection' (x : xs) (0 : ys) = (x :) <$> patternIntersection' xs ys
patternIntersection' (x : xs) (y : ys) | x == y = (x :) <$> patternIntersection' xs ys
| otherwise = Nothing
isPatternSubset :: [Int] -> [Int] -> Bool
isPatternSubset [] [] = True
isPatternSubset (x : xs) (0 : ys) = isPatternSubset xs ys
isPatternSubset (x : xs) (y : ys) = x == y && isPatternSubset xs ys
derMapCrossProd :: [[([Int], [Int], [DerT])]] -> [([Int], [Int], [DerT])]
derMapCrossProd [dm] = dm
derMapCrossProd (dm : dms) = [(e1 ++ e2, v1 ++ v2, [d1 * d2]) | let dmcp = derMapCrossProd dms, (e1,v1,[d1]) <- dm, (e2,v2,[d2]) <- dmcp]
compute_generalized_Cauchy_distribution_quantiles noise_Cauchy_gamma =
let
k1 = 1000
k2 = 20
k3 = -10
pd x = 1 / (1 + x**noise_Cauchy_gamma)
invk1 = (1 :: Double) / fromIntegral k1
--samples = map ((invk1 *) . fromIntegral) [0..k1-1] ++ map ((\ i -> exp (invk1 * i)) . fromIntegral) [0..k2*k1]
samples = 0 : map ((\ i -> exp (invk1 * i)) . fromIntegral) [k3*k1..k2*k1]
pds = map pd samples
ps = zipWith (*) pds $ zipWith (-) (tail samples) samples
cps = prefixSum ps
invtotalprob = 1 / last cps
qlist = zip (map (invtotalprob *) cps) samples
--forM_ (zip3 samples pds cps) $ \ (s,pd,cp) ->
-- printf "%0.3f %0.7f %0.7f\n" s (pd*invtotalprob) (cp*invtotalprob)
--forM_ qlist $ \ (cp,s) ->
-- printf "%0.7f %0.3f\n" cp s
findQuantiles = f qlist where
f _ [] = []
f qs@((cp,s):qs') cp0s@(cp0:cp0s')
| cp < cp0 = f qs' cp0s
| otherwise = s : f qs cp0s'
in findQuantiles
nmcs :: Name -> [String]
nmcs (Name _ ncs) = map ncStr ncs
aggrOp :: Name -> String
aggrOp = map toLower . head . nmcs
data ScalExpr = BoolExpr BoolExpr | IntExpr IntExpr
data BoolExpr = BoolLit Bool | RelOp2 (Int -> Int -> Bool) IntExpr IntExpr | BoolOp1 (Bool -> Bool) BoolExpr | BoolOp2 (Bool -> Bool -> Bool) BoolExpr BoolExpr
data IntExpr = Ident Int | IntLit Int | ArOp1 (Int -> Int) IntExpr | ArOp2 (Int -> Int -> Int) IntExpr IntExpr
scalExprMaxAddr = f where
f (BoolExpr e) =
case e of
BoolLit _ -> 0
RelOp2 _ e1 e2 -> f (IntExpr e1) `max` f (IntExpr e2)
BoolOp1 _ e1 -> f (BoolExpr e1)
BoolOp2 _ e1 e2 -> f (BoolExpr e1) `max` f (BoolExpr e2)
f (IntExpr e) =
case e of
Ident i -> i
IntLit _ -> 0
ArOp1 _ e1 -> f (IntExpr e1)
ArOp2 _ e1 e2 -> f (IntExpr e1) `max` f (IntExpr e2)
compileScalarExpr :: (Name -> Int) -> ScalarExpr -> ScalExpr
compileScalarExpr nta = f where
f (BooleanLit _ b) = BoolExpr (BoolLit b)
f (NumberLit _ s) = IntExpr (IntLit (read s))
f (Identifier _ ns) = IntExpr (Ident (nta ns))
f (BinaryOp _ ns e1 e2) =
let
n = head (nmcs ns)
in
case n of
"+" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
IntExpr $ ArOp2 (+) ie1 ie2
"-" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
IntExpr $ ArOp2 (-) ie1 ie2
"*" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
IntExpr $ ArOp2 (*) ie1 ie2
"/" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
IntExpr $ ArOp2 div ie1 ie2
"%" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
IntExpr $ ArOp2 mod ie1 ie2
"=" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
BoolExpr $ RelOp2 (==) ie1 ie2
"!=" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
BoolExpr $ RelOp2 (/=) ie1 ie2
"<>" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
BoolExpr $ RelOp2 (/=) ie1 ie2
"<=" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
BoolExpr $ RelOp2 (<=) ie1 ie2
">=" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
BoolExpr $ RelOp2 (>=) ie1 ie2
"<" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
BoolExpr $ RelOp2 (<) ie1 ie2
">" ->
let
IntExpr ie1 = f e1
IntExpr ie2 = f e2
in
BoolExpr $ RelOp2 (>) ie1 ie2
"or" ->
let
BoolExpr be1 = f e1
BoolExpr be2 = f e2
in
BoolExpr $ BoolOp2 (||) be1 be2
"and" ->
let
BoolExpr be1 = f e1
BoolExpr be2 = f e2
in
BoolExpr $ BoolOp2 (&&) be1 be2
data JoinedRow = JoinedRow {
getRow :: IOUArray Int Int,
areAllPrevEqsDaddrs :: UArray Int Bool,
evalScalExpr :: ScalExpr -> IO (Maybe (Either Bool Int)),
checkScalExpr :: ScalExpr -> IO Bool,
writeRowElements :: Int -> [Int] -> IO Bool,
inferRowElement :: Int -> IO ()
}
createJoinedRow :: Int -> Array Int (Maybe Int) -> Array Int [ScalExpr] -> [Int] -> IO JoinedRow
createJoinedRow totalNumCols prevEq wheresForAddr daddrs = do
row <- newArray (0, totalNumCols-1) 0 :: IO (IOUArray Int Int)
isdaddrArr <- newArray (0, totalNumCols-1) False :: IO (IOUArray Int Bool)
areAllPrevEqsDaddrsArr <- newArray (0, totalNumCols-1) False :: IO (IOUArray Int Bool)
forM_ daddrs $ \ a -> do
writeArray isdaddrArr a True
case prevEq ! a of
Nothing -> writeArray areAllPrevEqsDaddrsArr a True
Just a2 -> readArray areAllPrevEqsDaddrsArr a2 >>= writeArray areAllPrevEqsDaddrsArr a
isdaddr <- freeze isdaddrArr :: IO (UArray Int Bool)
areAllPrevEqsDaddrs <- freeze areAllPrevEqsDaddrsArr :: IO (UArray Int Bool)
let
evalScalExpr :: ScalExpr -> IO (Maybe (Either Bool Int))
evalScalExpr (BoolExpr e) =
case e of
BoolLit v -> return $ Just (Left v)
RelOp2 f e1 e2 -> do
r1 <- evalScalExpr (IntExpr e1)
r2 <- evalScalExpr (IntExpr e2)
return $ case (r1,r2) of
(Just (Right v1), Just (Right v2)) -> Just (Left (f v1 v2))
(Nothing, Just (Right v2)) -> Nothing
(Just (Right v1), Nothing) -> Nothing
BoolOp1 f e1 -> do
r1 <- evalScalExpr (BoolExpr e1)
return $ case r1 of
Just (Left v1) -> Just (Left (f v1))
Nothing -> Nothing
BoolOp2 f e1 e2 -> do
r1 <- evalScalExpr (BoolExpr e1)
r2 <- evalScalExpr (BoolExpr e2)
return $ case (r1,r2) of
(Just (Left v1), Just (Left v2)) -> Just (Left (f v1 v2))
(Nothing, Just (Left v2)) -> Nothing
(Just (Left v1), Nothing) -> Nothing
evalScalExpr (IntExpr e) =
case e of
Ident i | isdaddr ! i -> return Nothing
| otherwise -> (Just . Right) <$> readArray row i
IntLit v -> return $ Just (Right v)
ArOp1 f e1 -> do
r1 <- evalScalExpr (IntExpr e1)
return $ case r1 of
Just (Right v1) -> Just (Right (f v1))
Nothing -> Nothing
ArOp2 f e1 e2 -> do
r1 <- evalScalExpr (IntExpr e1)
r2 <- evalScalExpr (IntExpr e2)
return $ case (r1,r2) of
(Just (Right v1), Just (Right v2)) -> Just (Right (f v1 v2))
(Nothing, Just (Right v2)) -> Nothing
(Just (Right v1), Nothing) -> Nothing
checkScalExpr :: ScalExpr -> IO Bool
checkScalExpr e = do
r <- evalScalExpr e
return $ case r of
Nothing -> True
Just (Left True) -> True
_ -> False
writePrevEqs :: Int -> Int -> IO ()
writePrevEqs a v = do
writeArray row a v
case prevEq ! a of
Nothing -> return ()
Just a2 -> writePrevEqs a2 v
writeRowElement :: Int -> Int -> IO Bool
writeRowElement a cv = do
writeArray row a cv
checksPassed2 <- mapM checkScalExpr (wheresForAddr ! a)
checkPassed3 <- case prevEq ! a of
Nothing -> return True
Just a2 ->
if areAllPrevEqsDaddrs ! a2 then do
writePrevEqs a2 cv
return True
else do
v2 <- readArray row a2
return (v2 == cv)
return (and checksPassed2 && checkPassed3)
writeRowElements :: Int -> [Int] -> IO Bool
writeRowElements a cvs = and <$> zipWithM writeRowElement [a..] cvs
inferRowElement :: Int -> IO ()
inferRowElement a =
unless (areAllPrevEqsDaddrs ! a) $
case prevEq ! a of
Just a2 -> readArray row a2 >>= writeArray row a
return $ JoinedRow row areAllPrevEqsDaddrs evalScalExpr checkScalExpr writeRowElements inferRowElement
showNoiseLevelList :: [Double] -> String
showNoiseLevelList [] = "[]"
showNoiseLevelList nls = take (length s - 3) s
where s = concatMap (printf "%0.3f | " :: Double -> String) nls
showDoubleNoiseLevelList :: [Double] -> [Double] -> String
showDoubleNoiseLevelList [] [] = "[]"
showDoubleNoiseLevelList nls1 nls2 = take (length s - 3) s
where s = concat $ zipWith (printf "%9.3f # %9.3f | " :: Double -> Double -> String) nls1 nls2
performLocalSensitivityAnalysis :: Bool -> Map CatName [(CatName, CatName)] -> QueryExpr -> IO ()
performLocalSensitivityAnalysis debug schema query = do
putStrLn "performLocalSensitivityAnalysis"
putStrLn "Processing the schema"
origTableCols <- fmap Map.fromList $ forM (Map.toList schema) $ \ (n1,ns) -> do
let tblName = T.unpack n1
let cols = map (T.unpack . fst) ns
return (tblName, cols)
let np = NoiseParameters { noise_epsilon = 1, noise_b2 = 0.5 }
--forM_ [0.1,0.2..0.9] $ \ b2 -> do
-- _ <- performLocalSensitivityAnalysis' debug np{noise_b2 = b2} origTableCols query
-- return ()
_ <- performLocalSensitivityAnalysis' debug np origTableCols query
return ()
performLocalSensitivityAnalysis' :: Bool -> NoiseParameters -> Map String [String] -> QueryExpr -> IO ([String], Table, [([(String, Int)], [([Int], [Int], [DerT])])])
performLocalSensitivityAnalysis' debug np origTableCols query = do
putStrLn "performLocalSensitivityAnalysis'"
putStrLn "Processing FROM clause"
(db,hasSubQueries,allSubQueryDers,tableName,newTableIds,origTables,newTableCount,numCols,tblAddr,nmcsToAddr,totalNumCols,colEq,numTables) <- do
let tmpTableName = ('$' :)
(tableNames, origTableNames, colNamess, db, derss) <- fmap unzip5 $ forM (selTref query) $ \ tr -> do
case tr of
Tref _ n -> do
let tblName = head (nmcs n)
printf "%s -> %s\n" tblName tblName
return (tblName, tblName, origTableCols Map.! tblName, dbTables Map.! tblName, Nothing)
TableAlias _ newTblName0 (Tref _ n) -> do
let newTblName = ncStr newTblName0
let origTblName = head (nmcs n)
printf "%s -> %s\n" origTblName newTblName
return (newTblName, origTblName, origTableCols Map.! origTblName, dbTables Map.! origTblName, Nothing)
TableAlias _ newTblName0 (SubTref _ subquery) -> do
let newTblName = ncStr newTblName0
putStrLn "Processing subquery"
putStrLn "==================="
(subColNames, res, ders) <- performLocalSensitivityAnalysis' debug np origTableCols subquery
putStrLn "============================"
putStrLn "Finished processing subquery"
printf "-> %s\n" newTblName
return (newTblName, tmpTableName newTblName, subColNames, res, Just ders)
--let subQueryDers = Map.fromList $ map (\ (x, Just y) -> (x,y)) $ filter (isJust . snd) $ zip origTableNames derss
-- add identity subquery derivatives for those tables that are not actually results of subqueries
let hasSubQueries = any isJust derss
let
allSubQueryDers = Map.fromList $ zip origTableNames $
zipWith3
(\ origTblName numCols ders ->
case ders of
Just ders -> ders
Nothing -> let zs = replicate numCols 0 in [([(origTblName,1)],[(zs,zs,[1])])])
origTableNames
(map length colNamess)
derss
--let origTableName = (Map.fromList (zip tableNames origTableNames) Map.!)
let numTables = length tableNames
let tableId = (Map.fromList (zip tableNames [0..]) Map.!)
let tableName = (Map.fromList (zip [0..] tableNames) Map.!)
let newTableIdsMap = Map.fromList $ map (\ xs -> (fst (head xs), map (tableId . snd) xs)) $ groupBy (\ x y -> fst x == fst y) $ sort $ zip origTableNames tableNames
let newTableIds = (newTableIdsMap Map.!)
let origTables = Map.keys newTableIdsMap
putStr "Tables: "
print tableNames
putStr "Original tables: "
print origTables
let newTableCount = length . newTableIds
let colId = (Map.fromList (zip tableNames (map (\ colNames -> (Map.fromList (zip colNames [0..]) Map.!)) colNamess)) Map.!)
let numCols = (Map.fromList (zip [0..] (map length colNamess)) Map.!)
let nmcsToColId [tn,cn] = (tableId tn, colId tn cn)
let tblAddr = listArray (0,numTables) (prefixSum (map numCols [0..numTables-1])) :: UArray Int Int
let nmcsToAddr ns = let (ti,ci) = nmcsToColId ns in (tblAddr ! ti) + ci
let totalNumCols = tblAddr ! numTables
colEq <- newArray ((0,0), (totalNumCols-1,totalNumCols-1)) False :: IO (IOUArray (Int,Int) Bool)
return (db,hasSubQueries,allSubQueryDers,tableName,newTableIds,origTables,newTableCount,numCols,tblAddr,nmcsToAddr,totalNumCols,colEq,numTables)
putStrLn "Processing SELECT clause"
let
(selectedColNames,groupExprs,numGroupExprs,sumExprs,assembleResult,assembleDer,numAssembledVs,numSumExprs) =
(selectedColNames,groupExprs,numGroupExprs,sumExprs,assembleResult,assembleDer,numAssembledVs,numSumExprs)
where
(selectedColNames, eithers) = unzip $
case selSelectList query of
SelectList _ sis ->
flip map sis $ \ si ->
(
case si of
SelectItem _ _ nc -> ncStr nc
,
case si of
SelectItem _ (App _ ns [e1]) _ ->
Left $
case aggrOp ns of
"count" -> IntExpr (IntLit 1)
"sum" -> cse e1
SelectItem _ e1 _ ->
Right $
cse e1
)
where
cse = compileScalarExpr (nmcsToAddr . nmcs)
(sumExprs0,groupExprs) =
partitionEithers eithers
numGroupExprs = length groupExprs
(sumExprs,assembleResult,assembleDer,numAssembledVs) =
if null sumExprs0
then
if selDistinct query == All
then ([IntExpr (IntLit 1)], id, id, numGroupExprs)
else ([], \ ([],vs,[]) -> ([],vs,[1::DerT]), \ (els,vs,[]) -> (els,vs,[1::DerT]), numGroupExprs)
else
if null groupExprs
-- TODO: add proper support for float instead of using round
then (sumExprs0, \ ([],vs,d) -> ([],assembleResult0 (map round d) vs,[1]), id, numGroupExprs)
else (sumExprs0, \ ([],vs,d) -> ([],assembleResult0 (map round d) vs,[1]), \ (els,vs,d) -> (els,assembleResult0 (map (const 0) d) vs,[2]), numExprs)
where
numExprs = length sumExprs0 + numGroupExprs
-- assemble a query result row from the values of sumExprs and groupExprs
assembleResult0 ss gs = f eithers ss gs where
f [] [] [] = []
f (Left _ : es) (s : ss) gs = s : f es ss gs
f (Right _ : es) ss (g : gs) = g : f es ss gs
numSumExprs = length sumExprs
let aggrExprBound = fromIntegral $
case sumExprs of [IntExpr (IntLit n)] -> n
_ -> sumExprBound
printf "Selected column names: %s\n" (show selectedColNames)
putStrLn "Processing WHERE clause"
wheresForAddr <- do
wheresForAddrArr <- newArray (0, totalNumCols-1) [] :: IO (IOArray Int [ScalExpr])
let
processWhere w =
case w of
BinaryOp _ n (Identifier _ n1) (Identifier _ n2) | nmcs n == ["="] -> do
let na1 = nmcsToAddr $ nmcs n1
let na2 = nmcsToAddr $ nmcs n2
writeArray colEq (na1,na2) True :: IO ()
BinaryOp _ n w1 w2 | nmcs n == ["and"] -> do
processWhere w1
processWhere w2
_ -> do
let se = compileScalarExpr (nmcsToAddr . nmcs) w
let a = scalExprMaxAddr se
wheres <- readArray wheresForAddrArr a
writeArray wheresForAddrArr a (se : wheres)
let wheres = extractWhereExpr query
forM_ wheres processWhere
freeze wheresForAddrArr :: IO (Array Int [ScalExpr])
forM_ [0..totalNumCols-1] $ \ i -> do
writeArray colEq (i,i) True
forM_ [0..totalNumCols-1] $ \ j -> do
b <- readArray colEq (j,i)
when b $ writeArray colEq (i,j) True
forM_ [0..totalNumCols-1] $ \ k -> do
forM_ [0..totalNumCols-1] $ \ i -> do
forM_ [0..totalNumCols-1] $ \ j -> do
b1 <- readArray colEq (i,k)
b2 <- readArray colEq (k,j)
when (b1 && b2) $ writeArray colEq (i,j) True
prevEq <- fmap (listArray (0,totalNumCols-1) :: [Maybe Int] -> Array Int (Maybe Int)) $ forM [0..totalNumCols-1] $ \ i -> do
eqs <- fmap concat $ forM [0..i-1] $ \ j -> do
b <- readArray colEq (i,j)
return $ if b then [j] else []
return $ if null eqs then Nothing else Just (maximum eqs)
let
findSmoothSensitivityDerMap :: IO (Map (Int,Int) [([Int],DerT)])
findSmoothSensitivityDerMap = do
-- (i,j) -> r -> the derivative of the count of table j (filtered by the where conditions) w.r.t. row r of table i
derivatives <- newIORef Map.empty :: IO (IORef (Map (Int,Int) (Map [Int] DerT)))
forM_ (zip [0..] db) $ \ (ti,currTable) -> do
--printf "findSmoothSensitivity: %d\n" ti
let ta = tblAddr ! ti
let lateAddrs = [(tblAddr ! (ti+1))..totalNumCols-1]
let daddrs = [0..ta-1] ++ lateAddrs
JoinedRow row areAllPrevEqsDaddrs evalScalExpr checkScalExpr writeRowElements inferRowElement <- createJoinedRow totalNumCols prevEq wheresForAddr daddrs
forM_ currTable $ \ tr -> do
checksPassed <- writeRowElements ta tr
forM_ lateAddrs inferRowElement
--printf " %s -> %s\n" (show tr) (show checksPassed)
when checksPassed $
forM_ [0..numTables-1] $ \ i ->
when (i /= ti) $ do
tri <- mapM (readArray row) [tblAddr ! i .. (tblAddr ! (i+1)) - 1]
--printf " %d: %s\n" i (show tri)
modifyIORef derivatives $
Map.alter
(\ m0 -> Just $
Map.alter
(\ n0 -> case n0 of Nothing -> Just 1; Just n -> Just (n+1))
tri
(case m0 of Nothing -> Map.empty; Just m -> m))
(i,ti)
when debug $ putStrLn "findSmoothSensitivity: derivatives"
derMaps <- readIORef derivatives
fmap Map.fromList $ forM (Map.assocs derMaps) $ \ ((i,j),derMap) -> do
let ders = Map.assocs derMap
forM_ ders $ \ (r,d) ->
when debug $ printf " (%d,%d) -> %s -> %0.0f\n" i j (show r) d
return ((i,j),ders)
smoothDerMap <- findSmoothSensitivityDerMap
printf "distrSmNlm = %s\n" (showNoiseLevelList $ map (`distrSmNlm` np) noise_distributions)
let
printDerivatives :: [([Int], [Int], [DerT])] -> IO ()
printDerivatives ders = when debug $ do
forM_ ders $ \ (els',vs,d) ->
printf " %s -> %s -> %s\n" (show els') (show vs) (show d) :: IO ()
-- dtables must be in ascending order
findDerivatives :: [Int] -> IO [([[Int]], [Int], [DerT])]
findDerivatives dtables = do
when debug $ putStr "Finding derivatives w.r.t. tables "
when debug $ print (map tableName dtables)
let numdtables = length dtables
row <- newArray (0, totalNumCols-1) 0 :: IO (IOUArray Int Int)
isdtableArr <- newArray (0, totalNumCols-1) False :: IO (IOUArray Int Bool)
forM_ dtables $ \ ti ->
writeArray isdtableArr ti True
isdtable <- freeze isdtableArr :: IO (UArray Int Bool)
let daddrs = concatMap (\ ti -> [tblAddr ! ti .. (tblAddr ! (ti+1))-1]) dtables
JoinedRow row areAllPrevEqsDaddrs evalScalExpr checkScalExpr writeRowElements inferRowElement <- createJoinedRow totalNumCols prevEq wheresForAddr daddrs
derivatives <- newIORef Map.empty :: IO (IORef (Map ([Int],[Int]) [DerT]))
let
recurse _ [] = do
svs0 <- mapM evalScalExpr sumExprs
let
svs = flip map svs0 $ \ sv0 ->
case sv0 of
Nothing -> sumExprBound
Just (Right v1) -> abs v1
vs0 <- mapM evalScalExpr groupExprs
let
vs = flip map vs0 $ \ v0 ->
case v0 of
Nothing -> 0
Just (Right v1) -> v1
els <- mapM (readArray row) daddrs
-- printf " %s -> %s -> %s\n" (show els) (show vs) (show svs)
let svs1 = map (fromIntegral :: Int -> DerT) svs
modifyIORef derivatives $ Map.alter (\ x -> case x of Nothing -> Just svs1; Just ns -> Just (zipWith (+) ns svs1)) (els,vs)
recurse ti (currTable : ts) = do
let ta = tblAddr ! ti
if isdtable ! ti then do
forM_ [ta .. (tblAddr ! (ti+1))-1] inferRowElement
recurse (ti+1) ts
else do
forM_ currTable $ \ tr -> do
--checksPassed <- forM (zip [0..] tr) $ \ (ci,cv) -> do
-- let a = ta + ci
-- writeRowElement a cv
checksPassed <- writeRowElements ta tr
--when (and checksPassed) $ do
when checksPassed $ do
recurse (ti+1) ts
recurse 0 db
ders <- readIORef derivatives
let
ncs = map numCols dtables
groupEls els = f els ncs where
f [] [] = []
f els (nc:ncs1) =
let
(els0,els1) = splitAt nc els
in
els0 : f els1 ncs1
forM (Map.assocs ders) $ \ ((els,vs),d) -> do
let gels = groupEls els
--printf "%s -> %s -> %s\n" (show gels) (show vs) (show d)
if numdtables == 1 && null vs && length d == 1
then do
let d1 = head d
let currti = head dtables
-- TODO: allow xs to be floating-point numbers
let
satds k xs =
if null ys || k < limit
then replicate (numeq - r) (x + q) ++ replicate r (x + q + 1) ++ ys
else satds (k - limit) (replicate numeq y ++ ys)
where
x = head xs
numeq = length $ takeWhile (x ==) xs
ys = dropWhile (x ==) xs
y = head ys
limit = numeq * (y - x)
(q,r) = quotRem k numeq
sds <- forM ([0..currti-1] ++ [currti+1..numTables-1]) $ \ i -> do
when debug $ printf " #%d:\n" i
fmap sum $ forM (smoothDerMap Map.! (currti,i)) $ \ (r,sd) ->
if isPatternSubset els r
then do
when debug $ printf " %s -> %0.2f\n" (show r) sd
return sd
else return 0
let xs = map round $ sort sds
let satd0 k xs = product (map (fromIntegral :: Int -> Double) (satds k xs)) * aggrExprBound
let numMissingRows = satd0 0 xs - d1
let satd k xs = satd0 k xs - numMissingRows
let smsens0 beta k xs = satd k xs * exp (-beta * fromIntegral k)
let
smsens beta xs =
let
isdecr k = smsens0 beta k xs > smsens0 beta (k+1) xs
f k = if isdecr k then k else f (2 * k)
g k1 k2 | k1 == k2 = k1
| isdecr k3 = g k1 k3
| otherwise = g (k3+1) k2
where k3 = (k1 + k2) `div` 2
in smsens0 beta (g 0 (f 1)) xs
let betas = map (`distrBeta` np) noise_distributions
--printf " beta = %s\n" (showNoiseLevelList betas)
--printf " 1/beta = %s\n" (showNoiseLevelList (map (1/) betas))
--forM_ [0..100] $ \ i ->
-- printf " %2d: %20s %10.3f %10.3f\n" i (show (satds i xs)) (satd i xs) (smsens0 beta i xs)
let smss = map (`smsens` xs) betas
when debug $ printf "%s -> %0.2f # %s # %s\n" (show els) d1 (show sds) (showNoiseLevelList smss)
--return (gels,vs,d++map ceiling smss)
return (gels,vs,d++smss)
else
return (gels,vs,d)
splitUnassembledElsVs (els,d) = (els',vs,d) where
(els',vs) = splitAt (length els - numGroupExprs) els
splitElsVs (els,d) = (els',vs,d) where
(els',vs) = splitAt (length els - numAssembledVs) els
unsplitElsVs (els,vs,d) = (els ++ vs, d)
-- dtncs contains a list of pairs of a table and the number of times to differentiate w.r.t. that table
findDerivativesWrtOrigTables :: [(String,Int)] -> IO [([Int], [Int], [DerT])]
findDerivativesWrtOrigTables dtncs = do
when debug $ putStr "Finding derivatives w.r.t. original tables "
when debug $ print dtncs
ders3 <- fmap concat $ forM (crossProd $ map (\ (tn,c) -> combins c (newTableIds tn)) dtncs) $ \ tableIdss -> do
let tableIds = concat tableIdss
let sti = sort tableIds
ders <- findDerivatives sti
ders2 <- fmap concat $ forM ders $ \ (gels,vs,d) -> do
let tels = (Map.fromList (zip sti gels) Map.!)
let oels = map (map tels) tableIdss
let poelss = crossProd (map permuts oels)
forM poelss $ \ poels -> do
return (concat (concat poels) ++ vs, d)
return ders2
let ders4 = map splitUnassembledElsVs ders3
--when debug $ putStrLn "ders4:"
--printDerivatives ders4
let ders5 = map (if null dtncs then assembleResult else assembleDer) ders4
--when debug $ putStrLn "ders5:"
--printDerivatives ders5
return ders5
findAllDerivativesWrtOrigTables :: IO [([(String,Int)], [([Int], [Int], [DerT])])]
findAllDerivativesWrtOrigTables =
let
f dtncs [] = (\ x -> [(dtncs,x)]) <$> findDerivativesWrtOrigTables dtncs
f dtncs ((tn,ntc) : tncs) =
fmap concat $ forM [0..ntc] $ \ i ->
f (if i == 0 then dtncs else (tn,i) : dtncs) tncs
in
f [] (zip origTables (map newTableCount origTables))
-- print $ mergeManyCpms [[([0,1],1),([0,2],2)], [([1,0],10),([2,0],20)]]
(_,queryResult0) : derivatives <- findAllDerivativesWrtOrigTables
let
queryResult = concatMap getResult queryResult0
-- TODO: add proper support for float instead of using round
where getResult ([],vs,[d]) = replicate (round d) vs
let canComputeNoiseLevel = numGroupExprs == 0 && numSumExprs == 1
{-
let
combineSubQueryDers :: IO [([(String,Int)], [([Int], [Int], [DerT])])]
combineSubQueryDers =
fmap concat $ forM derivatives $ \ (dtncs,ders) -> do
when debug $ putStr "Derivatives w.r.t. original tables "
when debug $ print dtncs
let
printDerivatives' tn dtncs ders = when debug $ do
printf " Derivatives of table %s w.r.t. tables %s\n" tn (show dtncs) :: IO ()
printDerivatives ders
findAllDers = f [] where
f rs [] = do
when debug $ print newdtnc
forM_ rs' $ \ (tn,tncs',ders) -> printDerivatives' tn tncs' ders
let cpDers = derMapCrossProd derss
when debug $ putStrLn " Cross product:"
printDerivatives cpDers
when debug $ printf " Derivatives of result table w.r.t. tables %s\n" (show dtncs)
printDerivatives ders
let ders2 = [(e1,v2,map (d1 *) d2s) | (e1,v1,[d1]) <- cpDers, (e2,v2,d2s) <- ders, let v1e2 = patternIntersection' v1 e2, isJust v1e2]
when debug $ printf " Derivatives of result table w.r.t. tables %s\n" (show newdtnc)
printDerivatives ders2
return [(newdtnc,ders2)]
where
rs' = reverse rs
(tns,newdtncs0,derss) = unzip3 rs'
newdtnc = concat newdtncs0
f rs (tnc@(tn,ntc) : tncs) =
if ntc >= 1
then
fmap concat $ forM (allSubQueryDers Map.! tn) $ \ (tncs',ders) -> do
f ((tn,tncs',ders) : rs) tncs
else
f rs tncs
findAllDers dtncs
ders3 <- if hasSubQueries then combineSubQueryDers else return derivatives
-}
-- TODO: support subqueries for smooth sensitivity
ders3 <- if hasSubQueries then error "Support of subqueries is currently broken" else return derivatives
nlss <- fmap transpose $ forM ders3 $ \ (dtncs,ders) -> do
putStr "Combined derivatives w.r.t. original tables "
print dtncs
let ders4 = map splitElsVs $ mergeManyCpms (map ((:[]) . unsplitElsVs) ders)
let numdtables = sum (map snd dtncs)
let
nlm :: Double -> Double -> Double
nlm noise_C1 noise_C2 = if numdtables == 0 then 0 else noise_C2 / noise_b2 np * (noise_C1 / noise_b1 np) ^ (numdtables - 1) / noise_epsilon np ^ numdtables
distr_nlm :: NoiseDistribution -> Double
distr_nlm d = nlm (distrC1 d) (distrC2 d)
let distr_nlms = map distr_nlm noise_distributions
let distr_smnlms = map (`distrSmNlm` np) noise_distributions
let canComputeSmoothNoiseLevel = canComputeNoiseLevel && numdtables == 1
when canComputeNoiseLevel $ printf "Noise level multiplier = %s\n" (showNoiseLevelList distr_nlms)
when canComputeSmoothNoiseLevel $ printf "Smooth noise level multiplier = %s\n" (showNoiseLevelList distr_smnlms)
maxd:maxsmss <- fmap (map maximum . transpose) $ forM ders4 $ \ (els',vs,d) -> do
let d1 = if null d then 1 else head d
--if canComputeNoiseLevel
-- then printf "%s -> %s -> %s -> noise level %0.3f | %0.3f\n" (show els') (show vs) (show d) nlC nlL
-- else printf "%s -> %s -> %s\n" (show els') (show vs) (show d)
printf "%s -> %s -> %s\n" (show els') (show vs) (show d)
--return nl
if canComputeNoiseLevel && length d >= 1
then return d
else return [d1]
let nls = map (* maxd) distr_nlms
let smnls = zipWith (*) maxsmss distr_smnlms
when canComputeNoiseLevel $ printf "-> noise level %s\n" (showNoiseLevelList nls)
when canComputeSmoothNoiseLevel $ printf "-> smooth noise level %s\n" (showNoiseLevelList smnls)
when canComputeSmoothNoiseLevel $ printf "smooth sensitivity (with gamma = 4) w.r.t. table %s: %0.3f\n" (fst (head dtncs)) (maxsmss !! 1)
--when canComputeNoiseLevel $ printf "-> noise level %0.3f | %0.3f\n" nlC nlL
return $ nls ++ if null smnls then replicate (length nls) 0 else smnls
let noiseLevels = map maximum nlss
let (nls1,nls2) = splitAt (length noise_distributions) noiseLevels
if canComputeNoiseLevel
then do
printf "query result = %0.3f\n" (fromIntegral (head (head queryResult)) :: Double)
printf "noise level to add = %s\n" (showDoubleNoiseLevelList nls1 nls2)
-- quantiles of the absolute value of added noise
let ps = 0 : 0.001 : 0.01 : 0.1 : 0.2 : 0.3 : 0.4 : map (\ i -> 1 - (2 :: Double)**(- 1.0 * i)) [1..20]
let nqss = transpose $ map (flip distrQuantiles ps) noise_distributions
forM_ (zip ps nqss) $ \ (p, nqs) -> do
let qs1 = zipWith (*) nls1 nqs
let qs2 = zipWith (*) nls2 nqs
--printf "%9.5f%% quantile: %0.3f %0.3f | %0.3f | ratio = %0.3f\n" (100 * p) (noiseLevelC * nqGC) qC qL (qC / qL)
printf "%9.5f%% quantile: %s\n" (100 * p) (showDoubleNoiseLevelList qs1 qs2)
else do
putStrLn "query result:"
mapM_ print queryResult
return (selectedColNames, queryResult, derivatives)