-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBanachQ.hs
1723 lines (1513 loc) · 84.8 KB
/
BanachQ.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies, RebindableSyntax, FlexibleInstances #-}
module BanachQ where
import Banach (Expr(..), TableExpr(..), (!!), chooseBeta, chooseBetaCustom, gamma, dualnorm, skipith)
import qualified Banach as B
import ProgramOptions
import CreateTablesQ
import DatabaseQ
import GroupQ
import NormsQ hiding ((!!))
import VarstateQ (VarState(..),VState(..))
import ErrorMsg
import RangeUtils
import qualified Prelude as P
import qualified Data.List as L
import Prelude hiding (fromInteger,fromRational,(!!),(+),(-),(*),(/),(**),(==),(/=),(<=),(>=),(<),(>),exp,abs,sum,product,minimum,maximum)
import Data.List hiding ((!!),sum,product,minimum,maximum)
import Data.List.Split
import qualified Data.Map as M
import qualified Data.Set as S
import Data.IORef
import Text.Printf
import Control.Monad
import System.Process
import qualified System.IO.Strict as StrictIO
sqlsaExecutablePathQuiet = "./sqlsa-quiet"
sqlsaExecutablePathVerbose = "./sqlsa-verbose"
combinedSensitivityTmpFileName = "_combined_sensitivity.tmp"
temporaryTableName = "_temp"
readTableToSensitivityMap :: IO (M.Map String Double)
readTableToSensitivityMap = do
s <- StrictIO.readFile combinedSensitivityTmpFileName
return $ M.fromList $ map ((\ [w1,w2] -> (w1, read w2 :: Double)) . words) $ lines s
fromInteger :: Integer -> Double
fromInteger = P.fromInteger
fromRational :: Rational -> Double
fromRational = P.fromRational
data TaskMap = TM [(String,Bool)] deriving Show
getMap :: TaskMap -> M.Map String Bool
getMap (TM xs) = M.fromList xs
-- the main data needed for banach analysis (without groups and task names)
data AnalysisDataWrtTable = ADWT String String B.TableExpr (String,String,String) deriving Show
data DataWrtTable = DWT AnalysisDataWrtTable OneGroupData [String] String (String, Norm String, ADouble) deriving Show
getData :: [DataWrtTable] -> [(String, String, OneGroupData, B.TableExpr,(String,String,String), [String], String)]
getData xs = map (\(DWT (ADWT x1 x2 x3 x4) x5 x6 x7 _) -> (x1, x2, x5, x3, x4, x6, x7)) xs
getTableNames :: [DataWrtTable] -> [String]
getTableNames xs = map (\(DWT (ADWT x1 _ _ _) _ _ _ _) -> x1) xs
getExtra :: DataWrtTable -> (String, Norm String, ADouble)
getExtra (DWT _ _ _ _ x8) = x8
data ExprQ = Q Double -- a constant
| VarQ String -- a variable
| FunQ String ExprQ -- an SQL function
| OpQ String ExprQ ExprQ -- an SQL binary operator
| ListFunQ String [ExprQ] -- an SQL function with argument list
| IfThenElseQ BoolExprQ ExprQ ExprQ
| (:+) ExprQ ExprQ
| (:-) ExprQ ExprQ
| (:*) ExprQ ExprQ
| (:/) ExprQ ExprQ
| (:**) ExprQ ExprQ -- exponentiation
| Select ExprQ String String -- SELECT x FROM y WHERE z
| GroupBy ExprQ String String -- x GROUP BY y HAVING z
| ExprQ `As` String -- x AS y
| ExprQ `Where` String -- x WHERE y
| Subquery ExprQ ExprQ -- SELECT x FROM (subquery y)
data BoolExprQ = CmpOpQ String ExprQ ExprQ -- an SQL comparison operator
| BoolExprQ String -- an SQL expression of boolean type
infix 4 ==
infix 4 /=
infix 4 <=
infix 4 >=
infix 4 <
infix 4 >
infixl 6 +
infixl 6 -
infixl 7 *
infixl 7 /
infixr 8 **
class Arith1Q a where
exp,abs :: a -> a
sum,product,minimum,maximum :: [a] -> a
instance Arith1Q Double where
exp = P.exp
abs = P.abs
sum = L.sum
product = L.product
minimum = L.minimum
maximum = L.maximum
instance Arith1Q ExprQ where
exp = expQ
abs = absQ
sum = sumQ
product = productQ
minimum = minimumQ
maximum = maximumQ
class ArithQ a b c | a b -> c where
(+),(-),(*),(/),(**) :: a -> b -> c
instance ArithQ Double Double Double where
(+) = (P.+)
(-) = (P.-)
(*) = (P.*)
(/) = (P./)
(**) = (P.**)
instance ArithQ ExprQ ExprQ ExprQ where
(+) = (:+)
(-) = (:-)
(*) = (:*)
(/) = (:/)
(**) = (:**)
instance ArithQ Double ExprQ ExprQ where
x + y = Q x :+ y
x - y = Q x :- y
x * y = Q x :* y
x / y = Q x :/ y
x ** y = Q x :** y
instance ArithQ ExprQ Double ExprQ where
x + y = x :+ Q y
x - y = x :- Q y
x * y = x :* Q y
x / y = x :/ Q y
x ** y = x :** Q y
class CmpQ a b c | a b -> c where
(==),(/=),(<=),(>=),(<),(>) :: a -> b -> c
instance CmpQ Double Double Bool where
(==) = (P.==)
(/=) = (P./=)
(<=) = (P.<=)
(>=) = (P.>=)
(<) = (P.<)
(>) = (P.>)
instance CmpQ ExprQ ExprQ BoolExprQ where
(==) = CmpOpQ "="
(/=) = CmpOpQ "!="
(<=) = CmpOpQ "<="
(>=) = CmpOpQ ">="
(<) = CmpOpQ "<"
(>) = CmpOpQ ">"
instance CmpQ Double ExprQ BoolExprQ where
x == y = Q x == y
x /= y = Q x /= y
x <= y = Q x <= y
x >= y = Q x >= y
x < y = Q x < y
x > y = Q x > y
instance CmpQ ExprQ Double BoolExprQ where
x == y = x == Q y
x /= y = x /= Q y
x <= y = x <= Q y
x >= y = x >= Q y
x < y = x < Q y
x > y = x > Q y
class IfThenElseQ a b where
ifThenElse :: a -> b -> b -> b
instance IfThenElseQ Bool a where
ifThenElse True x y = x
ifThenElse False x y = y
instance IfThenElseQ BoolExprQ ExprQ where
ifThenElse = IfThenElseQ
instance IfThenElseQ BoolExprQ AnalysisResult where
ifThenElse b x err = x -- TODO: handle the error message correctly
expQ = FunQ "exp"
logQ = FunQ "log"
absQ = FunQ "abs"
minimumT = FunQ "min"
maximumT = FunQ "max"
sumT = FunQ "sum"
productT = expQ . sumT . logQ
minimumQ = ListFunQ "least"
maximumQ = ListFunQ "greatest"
sumQ = foldl1 (:+)
productQ = foldl1 (:*)
-- forces the type of a number literal to be Double
--dbl :: Double -> Double
--dbl = id
---------------- a simple constant propagation block
applyListFunQ :: String -> [ExprQ] -> ExprQ
applyListFunQ "greatest" [x] = x
applyListFunQ "greatest" xs =
let ys = filter (\x -> case x of {Q _ -> True; _ -> False}) xs in
case ys of
[] -> ListFunQ "greatest" xs
_ -> let zs = filter (\x -> case x of {Q _ -> False; _ -> True}) xs in
let z = Q $ maximum (map (\(Q c) -> c) ys) in
case zs of
[] -> z
-- if z = 0 and all others are 'abs', then we may discard z
_ -> case z of
Q 0 -> let ws = filter (\x -> case x of {FunQ "abs" _ -> True; _ -> False}) zs in
case compare (length zs) (length ws) of
EQ -> case zs of
[w] -> w
_ -> ListFunQ "greatest" zs
_ -> ListFunQ "greatest" (z:zs)
_ -> ListFunQ "greatest" (z:zs)
applyListFunQ "least" [x] = x
applyListFunQ "least" xs =
let ys = filter (\x -> case x of {Q _ -> True; _ -> False}) xs in
case ys of
[] -> ListFunQ "least" xs
_ -> let zs = filter (\x -> case x of {Q _ -> False; _ -> True}) xs in
let z = Q $ maximum (map (\(Q c) -> c) ys) in
case zs of
[] -> z
-- if z = 0 and all others are 'abs', then we may discard zs
_ -> case z of
Q 0 -> let ws = filter (\x -> case x of {FunQ "abs" _ -> True; _ -> False}) zs in
case compare (length zs) (length ws) of
EQ -> z
_ -> ListFunQ "least" (z:zs)
_ -> ListFunQ "least" (z:zs)
applyFunQ :: String -> ExprQ -> ExprQ
applyFunQ f x =
case x of
Q c -> case f of
"exp" -> Q $ exp c
"log" -> Q $ log c
"abs" -> Q $ abs c
_ -> FunQ f x
_ -> FunQ f x
applyOpQ :: String -> ExprQ -> ExprQ -> ExprQ
applyOpQ op (Q cx) (Q cy) =
case op of
"+" -> Q (cx + cy)
"-" -> Q (cx - cy)
"*" -> Q (cx * cy)
"/" -> Q (cx / cy)
"^" -> Q (cx ** cy)
applyOpQ op x@(Q cx) y =
case op of
"+" -> if cx == 0 then y else (:+) x y
"-" -> (:-) x y
"*" -> if cx == 0 then Q 0 else (if cx == 1 then y else (:*) x y)
"/" -> if cx == 0 then Q 0 else (:/) x y
"^" -> if cx == 0 then Q 0 else (if cx == 1 then Q 1 else (:**) x y)
applyOpQ op x y@(Q cy) =
case op of
"+" -> if cy == 0 then x else (:+) x y
"-" -> if cy == 0 then x else (:-) x y
"*" -> if cy == 0 then Q 0 else (if cy == 1 then x else (:*) x y)
"/" -> if cy == 0 then Q (1/0) else (if cy == 1 then x else (:/) x y)
"^" -> if cy == 0 then Q 1 else (if cy == 1 then x else (:**) x y)
applyOpQ op x y =
case op of
"+" -> (:+) x y
"-" -> (:-) x y
"*" -> (:*) x y
"/" -> (:/) x y
"^" -> (:**) x y
constProp :: ExprQ -> ExprQ
constProp expr =
case expr of
Q c -> Q c
VarQ x -> VarQ x
FunQ f x -> applyFunQ f $ constProp x
OpQ op x y -> OpQ op (constProp x) (constProp y)
ListFunQ f xs -> applyListFunQ f $ map constProp xs
IfThenElseQ (CmpOpQ op z1 z2) x y -> case z of
Just True -> (constProp x)
Just False -> (constProp y)
Nothing -> IfThenElseQ (CmpOpQ op nz1 nz2) (constProp x) (constProp y)
where
nz1 = constProp z1
nz2 = constProp z2
z = constPropBool op nz1 nz2
IfThenElseQ b x y -> IfThenElseQ b (constProp x) (constProp y)
(x :+ y) -> applyOpQ "+" (constProp x) (constProp y)
(x :- y) -> applyOpQ "-" (constProp x) (constProp y)
(x :* y) -> applyOpQ "*" (constProp x) (constProp y)
(x :/ y) -> applyOpQ "/" (constProp x) (constProp y)
(x :** y) -> applyOpQ "^" (constProp x) (constProp y)
Select x fr wh -> Select (constProp x) fr wh
GroupBy x g h -> GroupBy (constProp x) g h
x `Where` y -> (constProp x) `Where` y
x `As` a -> (constProp x) `As` a
Subquery x y -> Subquery (constProp x) (constProp y)
constPropBool :: String -> ExprQ -> ExprQ -> Maybe Bool
constPropBool op (Q cx) (Q cy) =
case op of
"=" -> if cx == cy then Just True else Just False
"!=" -> if cx == cy then Just False else Just True
"<=" -> if cx <= cy then Just True else Just False
">=" -> if cx >= cy then Just True else Just False
"<" -> if cx < cy then Just True else Just False
">" -> if cx > cy then Just True else Just False
constPropBool op (Q cx) y =
case op of
">=" -> if cx == infinity then Just True else Nothing
_ -> Nothing
constPropBool op x (Q cy) =
case op of
"<=" -> if cy == infinity then Just True else Nothing
_ -> Nothing
constPropBool _ _ _ = Nothing
----------------
instance Show ExprQ where
show (Q x) | x >= 0 = if x == infinity then "99999.99" else show x
| otherwise = '(' : show x ++ ")"
show (VarQ x) = x
-- due to overflow errors, added temporarily rounding for exp here
-- show (FunQ f x) = case f of
-- "exp" -> "round(" ++ f ++ '(' : show x ++ ") :: numeric, 64)"
-- _ -> f ++ '(' : show x ++ ")"
show (FunQ f x) = f ++ '(' : show x ++ ")"
show (OpQ op x y) = '(' : show x ++ ' ' : op ++ ' ' : show y ++ ")"
show (ListFunQ f xs) = f ++ '(' : intercalate ", " (map show xs) ++ ")"
show (IfThenElseQ b x y) = "case when " ++ show b ++ " then " ++ show x ++ " else " ++ show y ++ " end"
show (x :+ y) = '(' : show x ++ " + " ++ show y ++ ")"
show (x :- y) = '(' : show x ++ " - " ++ show y ++ ")"
show (x :* y) = '(' : show x ++ " * " ++ show y ++ ")"
-- due to overflow errors, added temporarily rounding for sigmoids here
-- show (x :/ y) = "round((" ++ show x ++ " / " ++ show y ++ ") :: numeric, 64)"
show (x :/ y) = '(' : show x ++ " / " ++ show y ++ ")"
show (x :** y) = '(' : show x ++ " ^ " ++ show y ++ ")"
show (Select (Subquery x y) fr wh) = show (Subquery x (Select y fr wh))
show (Select (GroupBy (x `Where` y) g h) fr wh) = show (Select (GroupBy x g h) fr ('(' : wh ++ ") AND " ++ y))
show (Select (GroupBy x g h) fr wh) = "SELECT " ++ show x ++
(if null fr then "" else " FROM ") ++ fr ++ (if null wh then "" else " WHERE ") ++ wh ++
" GROUP BY " ++ g ++ (if null h then "" else " HAVING ") ++ h
show (Select (x `Where` y) fr wh) = show (Select x fr ('(' : wh ++ ") AND " ++ y))
show (Select x fr wh) = "SELECT " ++ show x ++ (if null fr then "" else " FROM ") ++ fr ++ (if null wh then "" else " WHERE ") ++ wh
show (GroupBy x g h) = show x ++ " GROUP BY " ++ g ++ (if null h then "" else " HAVING ") ++ h
show (x `As` a) = show x ++ " AS " ++ a
show (Subquery x y) = "SELECT " ++ show x ++ " FROM (" ++ show y ++ ") AS sub"
instance Show BoolExprQ where
show (CmpOpQ op x y) = '(' : show x ++ ' ' : op ++ ' ' : show y ++ ")"
show (BoolExprQ x) = '(' : x ++ ")"
data SmoothUpperBound = SUB {
subg :: Double -> ExprQ,
subBeta :: Double}
instance Show SmoothUpperBound where
show (SUB g beta0)
| beta0 >= 0 = let beta = chooseBeta beta0
in if beta >= beta0 then (printf "%s (beta = %0.3f)" (show (g beta)) beta :: String)
else ((error $ printf "ERROR (beta = %0.3f but must be >= %0.3f)" beta beta0) :: String)
| otherwise = "unknown"
data AnalysisResult = AR {
fx :: ExprQ, -- value of the analyzed function (f(x))
subf :: SmoothUpperBound, -- smooth upper bound of the absolute value of the analyzed function itself
sdsf :: SmoothUpperBound, -- smooth upper bound of the derivative sensitivity of the analyzed function
gub :: Double, -- global (constant) upper bound on the absolute value of the analyzed function itself
gsens :: Double, -- (upper bound on) global sensitivity of the analyzed function, may be infinity
arVarState :: VarState} -- Range lb ub, if both lower and upper bound are known, otherwise Exact
deriving Show
unknownSUB = SUB undefined (-1)
aR :: AnalysisResult
aR = AR {subf = unknownSUB, gub = infinity, gsens = infinity, arVarState = Exact}
chooseSUBBeta :: Double -> Maybe Double -> SmoothUpperBound -> Double
chooseSUBBeta defaultBeta fixedBeta (SUB g beta0) =
let beta = chooseBetaCustom defaultBeta fixedBeta beta0
in if beta >= beta0 then beta
else error $ printf "ERROR (beta = %0.3f but must be >= %0.3f)" beta beta0
-- compute ||(x_1,...,x_n)||_p
lpnorm :: Double -> [ExprQ] -> ExprQ
lpnorm p xs = (sum $ map (** p) $ map abs xs) ** (1 / p)
lpnormT :: Double -> ExprQ -> ExprQ
lpnormT p xs = (sumT $ (abs xs) ** p) ** (1 / p)
-- compute ||(x_1,...,x_n)||_q where || ||_q is the dual norm of || ||_p
lqnorm :: Double -> [ExprQ] -> ExprQ
lqnorm 1 xs = linfnorm xs
lqnorm p xs = lpnorm (dualnorm p) xs
lqnormT :: Double -> ExprQ -> ExprQ
lqnormT 1 = linfnormT
lqnormT p = lpnormT (dualnorm p)
-- compute ||(x_1,...,x_n)||_infinity
linfnorm :: [ExprQ] -> ExprQ
linfnorm = maximumQ . map absQ
linfnormT :: ExprQ -> ExprQ
linfnormT = maximumT . absQ
getUbFromAr :: AnalysisResult -> Double
getUbFromAr ar = case arVarState ar of Range lb ub -> ub
_ -> gub ar
getLbFromAr :: AnalysisResult -> Double
getLbFromAr ar = case arVarState ar of Range lb ub -> lb
_ -> - gub ar
getRangeFromAr :: AnalysisResult -> VarState
getRangeFromAr ar = Range (getLbFromAr ar) (getUbFromAr ar)
findUsedVars :: Expr -> [Int]
findUsedVars = fuv where
fuv expr =
case expr of
Prec _ -> []
StringCond _ -> []
Power i _ -> [i]
ComposePower e1 _ -> fuv e1
Exp r i -> [i]
ComposeExp r e1 -> fuv e1
Sigmoid a c i -> [i]
ComposeSigmoid a c e1 -> fuv e1
SigmoidPrecise aa ab c i -> [i]
ComposeSigmoidPrecise aa ab c e1 -> fuv e1
Tauoid a c i -> [i]
ComposeTauoid a c e1 -> fuv e1
TauoidPrecise aa ab c i -> [i]
ComposeTauoidPrecise aa ab c e1 -> fuv e1
L0Predicate i p -> [i]
PowerLN i r -> [i]
Const c -> []
ScaleNorm a e1 -> fuv e1
ZeroSens e1 -> fuv e1
L p is -> is
LInf is -> is
Prod es -> concatMap fuv es
Prod2 es -> concatMap fuv es
Min es -> concatMap fuv es
Max es -> concatMap fuv es
ComposeL p es -> concatMap fuv es
Sump p es -> concatMap fuv es
SumInf es -> concatMap fuv es
Sum2 es -> concatMap fuv es
analyzeExprQ :: [String] -> S.Set Int -> [VarState] -> [Int] -> Bool -> (M.Map String AnalysisResult) -> Expr -> AnalysisResult
analyzeExprQ colNames = analyzeExpr (map VarQ colNames)
-- computeGsens specifies whether we want to compute gsens or the rest of the analysis results
-- They must be computed separately because
-- the rest of the analysis requires gsens w.r.t. a different norm
-- (the one w.r.t. which we need smoothness instead of the one w.r.t. which we need the sensitivity)
analyzeExpr :: [ExprQ] -> S.Set Int -> [VarState] -> [Int] -> Bool -> (M.Map String AnalysisResult) -> Expr -> AnalysisResult
analyzeExpr row sensitiveVarSet varStates colTableCounts computeGsens subQueryMap = ae where
-- require n times smaller beta in the subexpression
scaleBeta n (SUB subg subBeta) = let c = fromIntegral n :: Double in SUB (\ beta -> subg (beta / c)) (subBeta * c)
scaleGsens :: Int -> Double -> Double
scaleGsens n gsens = if computeGsens then gsens else let c = fromIntegral n :: Double in c * gsens
ae expr =
case expr of
Prec (B.AR fx (B.SUB subg subBeta) (B.SUB sdsg sdsBeta)) -> AR {fx = Q fx, subf = SUB (Q . subg) subBeta, sdsf = SUB (Q . subg) subBeta,
gub = if subBeta > 0 then infinity else subg 0,
gsens = if sdsBeta > 0 then infinity else sdsg 0}
-- we use this construction only for equality checks, so an UB on f itself is 1
StringCond s ->
aR {fx = VarQ s,
subf = SUB (const (VarQ s)) 0,
sdsf = SUB (const (Q 0)) 0,
gub = 1.0,
gsens = 0}
Power i r ->
let x = row !! i
vs = varStates !! i
sf = colTableCounts !! i
sb = scaleBeta sf
sg = scaleGsens sf
in
-- ######################
-- here we assume that 'Id x' functions are converted to 'Power x 1'
-- we read fx from the table to keep table cross product correct
-- we assign variable placeholders for SUBs, although we compute them later when final beta will be known
let xName = show x in
if r == 1 && M.member xName subQueryMap then
let ar = subQueryMap M.! xName in
let (SUB _ beta1) = subf ar in
let (SUB _ beta2) = sdsf ar in
ar {fx = VarQ xName, subf = SUB (const $ VarQ ("_sens_" ++ xName ++ "_subf")) beta1, sdsf = SUB (const $ VarQ ("_sens_" ++ xName ++ "_sdsf")) beta2}
-- ######################
else if r == 1
then
let gub = getGubFromVs vs
in aR {fx = x,
subf = sb $ SUB (\ beta -> if gub < 1/beta then exp (beta * (abs x - gub)) * gub
else ifThenElse (abs x >= 1 / beta) (abs x) (exp (beta * abs x - 1) / beta)) 0,
sdsf = sb $ SUB (const (Q 1)) 0,
gub = gub,
gsens = sg 1,
arVarState = vs}
else if r >= 1
then
let x_ub = getUbFromVs vs
x_lb = max 0 (getLbFromVs vs)
ub = x_ub ** r
in if x > 0
then aR {fx = x ** r,
subf = sb $ SUB (\ beta -> if x_ub < r/beta
then exp (beta * (x - x_ub)) * ub
else ifThenElse (x >= r/beta) (x ** r) (exp (beta*x - r) * (r/beta)**r)) 0,
sdsf = sb $ SUB (\ beta -> if x_ub < (r-1)/beta
then exp (beta * (x - x_ub)) * r * x_ub**(r-1)
else ifThenElse (x >= (r-1)/beta) (r * x**(r-1)) (r * exp (beta*x - (r-1)) * ((r-1)/beta)**(r-1))) 0,
gub = ub,
gsens = sg $ r * x_ub**(r-1),
arVarState = Range (x_lb ** r) ub}
else error "analyzeExpr/Power: condition (r >= 1 && x > 0 || r == 1) not satisfied"
else error "analyzeExpr/Power: condition (r >= 1 && x > 0 || r == 1) not satisfied"
ComposePower e1 r ->
let ar @ (AR gx (SUB subf1g beta1) (SUB sdsf1g beta2) _ gsens _) = ae e1
beta3 = (r-1)*beta1 + beta2
b1 = if beta3 > 0 then beta1 / beta3 else 1/r
b2 = if beta3 > 0 then beta2 / beta3 else 1/r
gx_ub = getUbFromAr ar
gx_lb = max 0 (getLbFromAr ar)
ub = gx_ub ** r
in if r >= 1
then if gx > 0
then AR {fx = gx ** r,
subf = SUB (\ beta -> subf1g (beta / r) ** r) (r*beta1),
sdsf = SUB (\ beta -> r * (subf1g (b1 * beta))**(r-1) * sdsf1g (b2 * beta)) beta3,
gub = ub,
gsens = r * gx_ub ** (r-1) * gsens,
arVarState = Range (gx_lb ** r) ub}
else error "analyzeExpr/ComposePower: condition (r >= 1 && g(x) > 0) not satisfied"
else error "analyzeExpr/ComposePower: condition (r >= 1 && g(x) > 0) not satisfied"
Exp r i ->
let x = row !! i
x_ub = getUbFromVs (varStates !! i)
x_lb = getLbFromVs (varStates !! i)
f_x_ub = if r >= 0 then exp (r * x_ub) else exp (r * x_lb)
f_x_lb = if r >= 0 then exp (r * x_lb) else exp (r * x_ub)
sf = colTableCounts !! i
sb = scaleBeta sf
sg = scaleGsens sf
in aR {fx = exp (r * x),
subf = sb $ SUB (const $ exp (r * x)) (abs r),
sdsf = sb $ SUB (const $ abs r * exp (r * x)) (abs r),
gub = f_x_ub,
gsens = sg $ abs r * f_x_ub,
arVarState = Range f_x_lb f_x_ub}
ComposeExp r e1 ->
let ar @ (AR gx _ (SUB sdsf1g beta2) _ gsens _) = ae e1
b = gsens
gx_ub = getUbFromAr ar
gx_lb = getLbFromAr ar
f_x = exp (r * gx)
f_x_ub = if r >= 0 then exp (r * gx_ub) else exp (r * gx_lb)
f_x_lb = if r >= 0 then exp (r * gx_lb) else exp (r * gx_ub)
in aR {fx = f_x,
subf = SUB (const f_x) (abs r * b),
sdsf = SUB (\ beta -> abs r * f_x * sdsf1g (beta - abs r * b)) (abs r * b + beta2),
gub = f_x_ub,
gsens = abs r * f_x_ub * gsens,
arVarState = Range f_x_lb f_x_ub}
Sigmoid a c i ->
let x = row !! i
vs = varStates !! i
y = exp (a * (x - c))
z = y / (y + 1)
-- tested whether 1 / (1 + 1/y) preforms better than y / (y + 1)
-- y' = exp (a * (c - x))
-- z' = 1 / (1 + y')
a' = abs a
ub = case vs of Range lb ub -> let x = ub
y = exp (a * (x - c))
z = y / (y + 1)
in z
_ -> infinity
sf = colTableCounts !! i
sb = scaleBeta sf
sg = scaleGsens sf
in aR {fx = z,
subf = sb $ SUB (const z) a',
sdsf = sb $ SUB (const $ a' * y / (y+1)**2) a',
gub = ub,
gsens = sg $ a'/4,
arVarState = Range 0 ub}
ComposeSigmoid a c e1 ->
let ar @ (AR gx _ (SUB sdsf1g beta2) _ gsens _) = ae e1
b = gsens
y = exp (a * (gx - c))
z = y / (y + 1)
-- tested whether 1 / (1 + 1/y) preforms better than y / (y + 1)
--y' = exp (a * (c - gx))
--z' = 1 / (1 + y')
a' = abs a
gx_ub = getUbFromAr ar
ub = if isInfinite gx_ub then infinity else let gx = gx_ub
y = exp (a * (gx - c))
z = y / (y + 1)
in z
in aR {fx = z,
subf = SUB (const z) (a' * b),
sdsf = SUB (\ beta -> a' * y / (y+1)**2 * sdsf1g (beta - a' * b)) (a' * b + beta2),
gub = ub,
gsens = a'/4 * gsens,
arVarState = Range 0 ub}
-- 'aa' is the actual sigmoid precision, 'ab' is the smoothness that we want
SigmoidPrecise aa ab c i ->
let x = row !! i
vs = varStates !! i
y = exp (ab * (x - c))
y' = exp (aa * (x - c))
z = y' / (y'+1)
-- tested whether 1 / (1 + 1/y) preforms better than y / (y + 1)
--y'' = exp (aa * (c - x))
--z'' = 1 / (1+y'')
a' = abs ab
x_ub = getUbFromVs vs
ub = case vs of Range lb ub -> let x = x_ub
y' = exp (aa * (x - c))
z = y' / (y'+1)
in z
_ -> infinity
sf = colTableCounts !! i
sb = scaleBeta sf
sg = scaleGsens sf
in aR {fx = z,
subf = sb $ SUB (const (Q 1)) 0,
sdsf = sb $ SUB (const $ aa * y / (y+1)**2) a',
gub = ub,
gsens = sg $ abs aa / 4,
arVarState = Range 0 ub}
ComposeSigmoidPrecise aa ab c e1 ->
let ar @ (AR gx _ (SUB sdsf1g beta2) _ gsens _) = ae e1
b = gsens
y = exp (ab * (gx - c))
y' = exp (aa * (gx - c))
y'' :: Double -> ExprQ -- choose ab automatically from beta
y'' beta = let ab = (beta - beta2) / b in exp (ab * (gx - c))
z = y' / (y' + 1)
-- tested whether 1 / (1 + 1/y) preforms better than y / (y + 1)
--y''' = exp (aa * (c - gx))
--z''' = 1 / (1+y''')
a' = abs ab
gx_ub = getUbFromAr ar
ub = if isInfinite gx_ub then infinity else let gx = gx_ub
y' = exp (aa * (gx - c))
z = y' / (y' + 1)
in z
in aR {fx = z,
subf = SUB (const (Q 1)) 0,
sdsf = SUB (if ab == 0 then \ beta -> let y = y'' beta in aa * y / (y+1)**2 * sdsf1g (beta - a' * b)
else \ beta -> aa * y / (y+1)**2 * sdsf1g (beta - a' * b))
(a' * b + beta2),
gub = ub,
gsens = abs aa / 4 * gsens,
arVarState = Range 0 ub}
Tauoid a c i ->
let x = row !! i
y1 = exp ((-a) * (x - c))
y2 = exp (a * (x - c))
z = 2 / (y1 + y2)
a' = abs a
sf = colTableCounts !! i
sb = scaleBeta sf
sg = scaleGsens sf
in aR {fx = z,
subf = sb $ SUB (const z) a',
sdsf = sb $ SUB (const $ a' * z) a',
gub = 1,
gsens = sg a',
arVarState = Range 0 1}
ComposeTauoid a c e1 ->
let AR gx _ (SUB sdsf1g beta2) _ gsens _ = ae e1
b = gsens
y1 = exp ((-a) * (gx - c))
y2 = exp (a * (gx - c))
z = 2 / (y1 + y2)
a' = abs a
in aR {fx = z,
subf = SUB (const z) (a' * b),
sdsf = SUB (\ beta -> a' * z * sdsf1g (beta - a' * b)) (a' * b + beta2),
gub = 1,
gsens = a' * gsens,
arVarState = Range 0 1}
TauoidPrecise aa ab c i ->
let x = row !! i
y1 = exp ((-ab) * (x - c))
y2 = exp (ab * (x - c))
y1' = exp ((-aa) * (x - c))
y2' = exp (aa * (x - c))
z = 2 / (y1' + y2')
a' = abs ab
sf = colTableCounts !! i
sb = scaleBeta sf
sg = scaleGsens sf
in aR {fx = z,
subf = sb $ SUB (const (Q 1)) 0,
sdsf = sb $ SUB (const $ aa * 2 / (y1 + y2)) a',
gub = 1,
gsens = sg $ abs aa,
arVarState = Range 0 1}
ComposeTauoidPrecise aa ab c e1 ->
let AR gx _ (SUB sdsf1g beta2) _ gsens _ = ae e1
b = gsens
y1 = exp ((-ab) * (gx - c))
y2 = exp (ab * (gx - c))
y1' = exp ((-aa) * (gx - c))
y2' = exp (aa * (gx - c))
z = 2 / (y1' + y2')
a' = abs ab
in aR {fx = z,
subf = SUB (const (Q 1)) 0,
sdsf = SUB (\ beta -> aa * 2 / (y1 + y2) * sdsf1g (beta - a' * b)) (a' * b + beta2),
gub = 1,
gsens = abs aa * gsens,
arVarState = Range 0 1}
L0Predicate i p ->
let VarQ x = row !! i
sf = colTableCounts !! i
sb = scaleBeta sf
sg = scaleGsens sf
in aR {fx = if BoolExprQ (p x) then Q 1 else Q 0,
subf = sb $ SUB (\ beta -> if BoolExprQ (p x) then Q 1 else Q (exp (-beta))) 0,
sdsf = sb $ SUB (const (Q 1)) 0,
gub = 1,
gsens = sg 1,
arVarState = Range 0 1}
PowerLN i r ->
let x = row !! i
x_ub = getUbFromVs (varStates !! i)
x_lb = getLbFromVs (varStates !! i)
y_ub = if r >= 0 then x_ub ** r else if x_lb > 0 then x_lb ** r else infinity
y_lb = if r >= 0 then (if x_lb > 0 then x_lb ** r else 0) else x_ub ** r
sf = colTableCounts !! i
sb = scaleBeta sf
sg = scaleGsens sf
in if x > 0
then aR {fx = x ** r,
subf = sb $ SUB (const $ x ** r) (abs r),
sdsf = sb $ SUB (const $ abs r * x ** r) (abs r),
gub = y_ub,
gsens = sg $ if r >= 0 then r * x_ub ** r else if x_lb > 0 then abs r * x_lb ** r else infinity,
arVarState = Range y_lb y_ub}
else error "analyzeExpr/PowerLN: condition (x > 0) not satisfied"
Const c ->
aR {fx = Q c,
subf = SUB (const (Q $ abs c)) 0,
sdsf = SUB (const (Q 0)) 0,
gub = abs c,
gsens = 0,
arVarState = Range c c}
ScaleNorm a e1 ->
let AR fx1 (SUB subf1g subf1beta) (SUB sdsf1g sdsf1beta) gub gsens vs = ae e1
in aR {fx = fx1,
subf = SUB (\ beta -> subf1g (beta*a)) (subf1beta/a),
sdsf = SUB (\ beta -> sdsf1g (beta*a) / a) (sdsf1beta/a),
gub = gub,
gsens = gsens/a,
arVarState = vs}
ZeroSens e1 ->
let AR fx1 subf@(SUB subf1g subf1beta) (SUB sdsf1g sdsf1beta) gub gsens vs = ae e1
isSensitive = any (`S.member` sensitiveVarSet) (findUsedVars e1)
in aR {fx = fx1,
subf = if isSensitive then subf else SUB (const fx1) 0,
sdsf = SUB (const (Q 0)) 0,
gub = gub,
gsens = if isSensitive && not computeGsens then gsens else 0,
arVarState = vs}
L p is ->
let xs = map (row !!) is
y = lpnorm p xs
vs = rangeLpNorm p $ map (getRangeFromVs . (varStates !!)) is
ub = getGubFromVs vs
sf = P.maximum $ map (colTableCounts !!) is
sb = scaleBeta sf
sg = scaleGsens sf
in aR {fx = y,
subf = sb $ SUB (\ beta -> if ub < 1/beta
then exp (beta * (y - ub)) * ub
else if y >= 1/beta then y else exp (beta * y - 1) / beta) 0,
sdsf = sb $ SUB (const (Q 1)) 0,
gub = ub,
gsens = sg 1,
arVarState = vs}
LInf is ->
let xs = map (row !!) is
y = linfnorm xs
vs = rangeLInfNorm $ map (getRangeFromVs . (varStates !!)) is
ub = getGubFromVs vs
sf = P.maximum $ map (colTableCounts !!) is
sb = scaleBeta sf
sg = scaleGsens sf
in aR {fx = y,
subf = sb $ SUB (\ beta -> if ub < 1/beta
then exp (beta * (y - ub)) * ub
else if y >= 1/beta then y else exp (beta * y - 1) / beta) 0,
sdsf = sb $ SUB (const (Q 1)) 0,
gub = ub,
gsens = sg 1,
arVarState = vs}
Prod es -> combineArsProd $ map ae es
Prod2 es -> combineArsProd2 $ map ae es
Min es -> combineArsMin $ map ae es
Max es -> combineArsMax $ map ae es
ComposeL p es -> combineArsL p $ map ae es
Sump p es -> combineArsSump p $ map ae es
SumInf es -> combineArsSumInf $ map ae es
Sum2 es -> combineArsSum2 $ map ae es
combineArsProd :: [AnalysisResult] -> AnalysisResult
combineArsProd ars =
let fxs = map fx ars
subfs = map subf ars
sdsfs = map sdsf ars
subfBetas = map subBeta subfs
sdsfBetas = map subBeta sdsfs
subgs = map subg subfs
sdsgs = map subg sdsfs
gubs = map gub ars
gsenss = map gsens ars
rs = map getRangeFromAr ars
n = length ars
c i beta = let s = ((sdsgs !! i) beta) in if s == 0 then Q 0 else s * product (map ($ beta) $ skipith i subgs)
gc i = let s = (gsenss !! i) in if s == 0 then 0 else s * product (skipith i gubs)
in aR {fx = product fxs,
subf = SUB (\ beta -> product (map ($ beta) subgs)) (maximum subfBetas),
sdsf = SUB (\ beta -> linfnorm (map (\ i -> c i beta) [round 0..n P.- round 1])) (maximum (subfBetas ++ sdsfBetas)),
gub = product gubs,
gsens = B.linfnorm (map gc [round 0..n P.- round 1]),
arVarState = rangeProduct rs}
combineArsProd2 :: [AnalysisResult] -> AnalysisResult
combineArsProd2 ars =
let fxs = map fx ars
subfs = map subf ars
sdsfs = map sdsf ars
subfBetas = map subBeta subfs
sdsfBetas = map subBeta sdsfs
subgs = map subg subfs
sdsgs = map subg sdsfs
gubs = map gub ars
gsenss = map gsens ars
rs = map getRangeFromAr ars
minSubfBeta = sum subfBetas
n = length ars
n' = fromIntegral n :: Double
divideSubfBeta :: [Double] -> Double -> [Double]
divideSubfBeta subfBetas beta =
let
numZeroSubfBetas = fromIntegral (length $ filter (== 0) subfBetas) :: Double
minSubfBeta = sum subfBetas
in
if numZeroSubfBetas == 0 then let excess = (beta - minSubfBeta) / n' in map (+ excess) subfBetas
else let excess = (beta - minSubfBeta) / numZeroSubfBetas in map (\ x -> if x == 0 then excess else x) subfBetas
--divByn :: Double -> Double
--divByn x = x / n'
c i beta = product $ zipWith ($) ((sdsgs !! i) : skipith i subgs) (divideSubfBeta ((sdsfBetas !! i) : skipith i subfBetas) beta)
--c i beta = ((sdsgs !! i) (divByn beta)) * product (map ($ (divByn beta)) $ skipith i subgs)
gc i = let s = (gsenss !! i) in if s == 0 then 0 else s * product (skipith i gubs)
in aR {fx = product fxs,
subf = SUB (\ beta -> product (zipWith ($) subgs (divideSubfBeta subfBetas beta))) minSubfBeta,
sdsf = SUB (\ beta -> sum (map (\ i -> c i beta) [round 0..n P.- round 1])) (sum subfBetas + maximum (zipWith (-) sdsfBetas subfBetas)),
gub = product gubs,
gsens = sum (map gc [round 0..n P.- round 1]),
arVarState = rangeProduct rs}
combineArsMin :: [AnalysisResult] -> AnalysisResult
combineArsMin ars =
let fxs = map fx ars
subfs = map subf ars
sdsfs = map sdsf ars
subfBetas = map subBeta subfs
sdsfBetas = map subBeta sdsfs
subgs = map subg subfs
sdsgs = map subg sdsfs
gsenss = map gsens ars
lbs = map getLbFromAr ars
ubs = map getUbFromAr ars
vs = Range (minimum lbs) (minimum ubs)
in aR {fx = minimum fxs,
subf = SUB (\ beta -> minimum (map ($ beta) subgs)) (maximum subfBetas),
sdsf = SUB (\ beta -> maximum (map ($ beta) sdsgs)) (maximum sdsfBetas),
gub = getGubFromVs vs,
gsens = maximum gsenss,
arVarState = vs}
combineArsMinT :: AnalysisResult -> AnalysisResult
combineArsMinT ar =
aR {fx = minimumT (fx ar),
subf = SUB (\ beta -> minimumT (subg (subf ar) beta)) (subBeta (subf ar)),
sdsf = SUB (\ beta -> maximumT (subg (sdsf ar) beta)) (subBeta (sdsf ar))}
combineArsMax :: [AnalysisResult] -> AnalysisResult
combineArsMax ars =
let fxs = map fx ars
subfs = map subf ars
sdsfs = map sdsf ars
subfBetas = map subBeta subfs
sdsfBetas = map subBeta sdsfs
subgs = map subg subfs
sdsgs = map subg sdsfs
gubs = map gub ars
gsenss = map gsens ars
lbs = map getLbFromAr ars
ubs = map getUbFromAr ars
vs = Range (maximum lbs) (maximum ubs)
in aR {fx = maximum fxs,
subf = SUB (\ beta -> maximum (map ($ beta) subgs)) (maximum subfBetas),
sdsf = SUB (\ beta -> maximum (map ($ beta) sdsgs)) (maximum sdsfBetas),
gub = getGubFromVs vs,
gsens = maximum gsenss,
arVarState = vs}
combineArsMaxT :: AnalysisResult -> AnalysisResult
combineArsMaxT ar =
aR {fx = maximumT (fx ar),
subf = SUB (\ beta -> maximumT (subg (subf ar) beta)) (subBeta (subf ar)),
sdsf = SUB (\ beta -> maximumT (subg (sdsf ar) beta)) (subBeta (sdsf ar))}
combineArsLp :: Double -> [AnalysisResult] -> AnalysisResult
combineArsLp p ars =
let fxs = map fx ars
subfs = map subf ars
subfBetas = map subBeta subfs
subgs = map subg subfs
vs = rangeLpNorm p $ map getRangeFromAr ars
in aR {fx = lpnorm p fxs,
subf = SUB (\ beta -> lpnorm p (map ($ beta) subgs)) (maximum subfBetas),
gub = getUbFromVs vs,
arVarState = vs}
combineArsL :: Double -> [AnalysisResult] -> AnalysisResult
combineArsL p ars =
let sdsfs = map sdsf ars
sdsfBetas = map subBeta sdsfs
sdsgs = map subg sdsfs
gsenss = map gsens ars
in (combineArsLp p ars) {
sdsf = SUB (\ beta -> maximum (map ($ beta) sdsgs)) (maximum sdsfBetas),
gsens = maximum gsenss}
-- the computed function is l_p-norm but the norm is l_infinity
combineArsLpInf :: Double -> [AnalysisResult] -> AnalysisResult
combineArsLpInf p ars =
let sdsfs = map sdsf ars
sdsfBetas = map subBeta sdsfs
sdsgs = map subg sdsfs
gsenss = map gsens ars
in (combineArsLp p ars) {
sdsf = SUB (\ beta -> lpnorm 1 (map ($ beta) sdsgs)) (maximum sdsfBetas),
gsens = B.lpnorm 1 gsenss}