We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
import pandas as pd df = pd.DataFrame( [ ("aap", "1991-01-02", 100.0000), ("aap", "2024-12-24", 75.7575), ("noot", "1960-01-04", 11.111), ("noot", "2024-12-24", 123.45), ("noot", "2024-12-30", 321.54), ], columns=["name", "date", "value"], ).set_index(["name", "date"])["value"] index = df.iloc[:-1].copy().index assert all(index.levels[-1] == sorted(index.levels[-1])) index2 = index.remove_unused_levels() assert all(index2.levels[-1] == sorted(index2.levels[-1]))
Order or the multi index level is not kept. This causes issues with code like unstack being mis-ordered:
import pandas as pd df = pd.DataFrame( [ ("aap", "1991-01-02", 100.0000), ("aap", "2024-12-24", 75.7575), ("noot", "1960-01-04", 11.111), ("noot", "2024-12-24", 123.45), ("noot", "2024-12-30", 321.54), ], columns=["name", "date", "value"], ).set_index(["name", "date"])["value"] df.iloc[:-1].unstack(level=0)
I expect that the current order or the multi index level is kept.
commit : f538741 python : 3.9.13.final.0 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.19045 machine : AMD64 processor : Intel64 Family 6 Model 85 Stepping 7, GenuineIntel byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : English_United States.1252
pandas : 2.2.0 numpy : 1.26.4 pytz : 2023.3 dateutil : 2.8.2 setuptools : 63.4.1 pip : 24.3.1 Cython : None pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : 4.8.0 html5lib : 1.1 pymysql : None psycopg2 : None jinja2 : None IPython : 8.7.0 pandas_datareader : 0.10.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.12.2 bottleneck : 1.3.7 dataframe-api-compat : None fastparquet : None fsspec : 2024.10.0 gcsfs : None matplotlib : None numba : None numexpr : 2.8.8 odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pyreadstat : None python-calamine : None pyxlsb : None s3fs : 2024.10.0 scipy : 1.13.1 sqlalchemy : None tables : None tabulate : 0.9.0 xarray : None xlrd : 2.0.1 zstandard : None tzdata : 2023.3 qtpy : None pyqt5 : None
The text was updated successfully, but these errors were encountered:
Naively I would expected remove_unused_index_levels do something like below (assuming we always want the levels to be sorted):
remove_unused_index_levels
def remove_unused_index_levels(index: pd.MultiIndex) -> pd.MultiIndex: """Remove unused index levels, keeping levels ordered.""" codes, levels, names = index_codes_levels_names(index) for i, (code, level) in enumerate(zip(codes, levels)): uniq_code = np.unique(code) codes[i] = np.searchsorted(uniq_code, code) levels[i] = level[uniq_code] return pd.MultiIndex(levels, codes, names=names)
Sorry, something went wrong.
No branches or pull requests
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
Order or the multi index level is not kept. This causes issues with code like unstack being mis-ordered:
Expected Behavior
I expect that the current order or the multi index level is kept.
Installed Versions
INSTALLED VERSIONS
commit : f538741
python : 3.9.13.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19045
machine : AMD64
processor : Intel64 Family 6 Model 85 Stepping 7, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : English_United States.1252
pandas : 2.2.0
numpy : 1.26.4
pytz : 2023.3
dateutil : 2.8.2
setuptools : 63.4.1
pip : 24.3.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.8.0
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.7.0
pandas_datareader : 0.10.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.2
bottleneck : 1.3.7
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.10.0
gcsfs : None
matplotlib : None
numba : None
numexpr : 2.8.8
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : 2024.10.0
scipy : 1.13.1
sqlalchemy : None
tables : None
tabulate : 0.9.0
xarray : None
xlrd : 2.0.1
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: