|
| 1 | +## 题目地址 |
| 2 | +https://leetcode.com/problems/lru-cache/description/ |
| 3 | + |
| 4 | +## 题目描述 |
| 5 | + |
| 6 | +``` |
| 7 | +Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put. |
| 8 | +
|
| 9 | +get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. |
| 10 | +put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item. |
| 11 | +
|
| 12 | +Follow up: |
| 13 | +Could you do both operations in O(1) time complexity? |
| 14 | +
|
| 15 | +Example: |
| 16 | +
|
| 17 | +LRUCache cache = new LRUCache( 2 /* capacity */ ); |
| 18 | +
|
| 19 | +cache.put(1, 1); |
| 20 | +cache.put(2, 2); |
| 21 | +cache.get(1); // returns 1 |
| 22 | +cache.put(3, 3); // evicts key 2 |
| 23 | +cache.get(2); // returns -1 (not found) |
| 24 | +cache.put(4, 4); // evicts key 1 |
| 25 | +cache.get(1); // returns -1 (not found) |
| 26 | +cache.get(3); // returns 3 |
| 27 | +cache.get(4); // returns 4 |
| 28 | +
|
| 29 | +``` |
| 30 | + |
| 31 | +## 思路 |
| 32 | + |
| 33 | +由于是保留是最近使用的N条数据,这就和队列的特性很符合, 先进入队列的,先出队列。 |
| 34 | + |
| 35 | +因此思路就是用一个队列来记录目前缓存的所有key, 每次push都进行判断,如果 |
| 36 | +超出最大容量限制则进行清除缓存的操作, 具体清除谁就按照刚才说的队列方式进行处理,同时对key进行入队操作。 |
| 37 | + |
| 38 | +get的时候,如果缓存中有,则调整队列(具体操作为删除指定元素和入队两个操作)。 缓存中没有则返回-1 |
| 39 | + |
| 40 | +## 关键点解析 |
| 41 | + |
| 42 | +- 队列简化操作 |
| 43 | + |
| 44 | +- 队列的操作是这道题的灵魂, 很容易少考虑情况 |
| 45 | + |
| 46 | + |
| 47 | +## 代码 |
| 48 | + |
| 49 | +```js |
| 50 | +/* |
| 51 | + * @lc app=leetcode id=146 lang=javascript |
| 52 | + * |
| 53 | + * [146] LRU Cache |
| 54 | + * |
| 55 | + * https://leetcode.com/problems/lru-cache/description/ |
| 56 | + * |
| 57 | + * algorithms |
| 58 | + * Hard (24.17%) |
| 59 | + * Total Accepted: 272.8K |
| 60 | + * Total Submissions: 1.1M |
| 61 | + * Testcase Example: '["LRUCache","put","put","get","put","get","put","get","get","get"]\n[[2],[1,1],[2,2],[1],[3,3],[2],[4,4],[1],[3],[4]]' |
| 62 | + * |
| 63 | + * |
| 64 | + * Design and implement a data structure for Least Recently Used (LRU) cache. |
| 65 | + * It should support the following operations: get and put. |
| 66 | + * |
| 67 | + * |
| 68 | + * |
| 69 | + * get(key) - Get the value (will always be positive) of the key if the key |
| 70 | + * exists in the cache, otherwise return -1. |
| 71 | + * put(key, value) - Set or insert the value if the key is not already present. |
| 72 | + * When the cache reached its capacity, it should invalidate the least recently |
| 73 | + * used item before inserting a new item. |
| 74 | + * |
| 75 | + * |
| 76 | + * Follow up: |
| 77 | + * Could you do both operations in O(1) time complexity? |
| 78 | + * |
| 79 | + * Example: |
| 80 | + * |
| 81 | + * LRUCache cache = new LRUCache( 2 ); |
| 82 | + * |
| 83 | + * cache.put(1, 1); |
| 84 | + * cache.put(2, 2); |
| 85 | + * cache.get(1); // returns 1 |
| 86 | + * cache.put(3, 3); // evicts key 2 |
| 87 | + * cache.get(2); // returns -1 (not found) |
| 88 | + * cache.put(4, 4); // evicts key 1 |
| 89 | + * cache.get(1); // returns -1 (not found) |
| 90 | + * cache.get(3); // returns 3 |
| 91 | + * cache.get(4); // returns 4 |
| 92 | + * |
| 93 | + * |
| 94 | + */ |
| 95 | +/** |
| 96 | + * @param {number} capacity |
| 97 | + */ |
| 98 | +var LRUCache = function(capacity) { |
| 99 | + this.cache = {}; |
| 100 | + this.capacity = capacity; |
| 101 | + this.size = 0; |
| 102 | + this.queue = []; |
| 103 | +}; |
| 104 | + |
| 105 | +/** |
| 106 | + * @param {number} key |
| 107 | + * @return {number} |
| 108 | + */ |
| 109 | +LRUCache.prototype.get = function(key) { |
| 110 | + const hit = this.cache[key]; |
| 111 | + |
| 112 | + if (hit !== undefined) { |
| 113 | + this.queue = this.queue.filter(q => q !== key); |
| 114 | + this.queue.push(key); |
| 115 | + return hit; |
| 116 | + } |
| 117 | + return -1; |
| 118 | +}; |
| 119 | + |
| 120 | +/** |
| 121 | + * @param {number} key |
| 122 | + * @param {number} value |
| 123 | + * @return {void} |
| 124 | + */ |
| 125 | +LRUCache.prototype.put = function(key, value) { |
| 126 | + const hit = this.cache[key]; |
| 127 | + |
| 128 | + // update cache |
| 129 | + this.cache[key] = value; |
| 130 | + |
| 131 | + if (!hit) { |
| 132 | + // invalid cache and resize size; |
| 133 | + if (this.size === this.capacity) { |
| 134 | + // invalid cache |
| 135 | + const key = this.queue.shift(); |
| 136 | + this.cache[key] = undefined; |
| 137 | + } else { |
| 138 | + this.size = this.size + 1; |
| 139 | + } |
| 140 | + this.queue.push(key); |
| 141 | + } else { |
| 142 | + this.queue = this.queue.filter(q => q !== key); |
| 143 | + this.queue.push(key); |
| 144 | + } |
| 145 | +}; |
| 146 | + |
| 147 | +/** |
| 148 | + * Your LRUCache object will be instantiated and called as such: |
| 149 | + * var obj = new LRUCache(capacity) |
| 150 | + * var param_1 = obj.get(key) |
| 151 | + * obj.put(key,value) |
| 152 | + */ |
| 153 | + |
| 154 | + |
| 155 | +``` |
0 commit comments