-
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtyping.html
966 lines (753 loc) · 61.9 KB
/
typing.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
<!DOCTYPE html>
<html lang="en" data-content_root="../" data-theme="light">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Typing (numpy.typing) — NumPy v2.3.dev0 Manual</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "light";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../_static/graphviz.css?v=eafc0fe6" />
<link rel="stylesheet" type="text/css" href="../_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" />
<link rel="stylesheet" type="text/css" href="../_static/jupyterlite_sphinx.css?v=2c9f8f05" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../_static/numpy.css?v=a1b581f7" />
<!-- So that users can add custom icons -->
<script src="../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../_static/documentation_options.js?v=c1318490"></script>
<script src="../_static/doctools.js?v=888ff710"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=30646c52"></script>
<script src="../_static/jupyterlite_sphinx.js?v=96e329c5"></script>
<script src="../_static/design-tabs.js?v=f930bc37"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'reference/typing';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://numpy.org/doc/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = 'devdocs';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
true;
</script>
<link rel="icon" href="../_static/favicon.ico"/>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="ctypes foreign function interface (numpy.ctypeslib)" href="routines.ctypeslib.html" />
<link rel="prev" title="Testing guidelines" href="testing.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="2.3.dev0" />
<meta name="docbuild:last-update" content="Apr 21, 2025"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="light">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/numpylogo.svg" class="logo__image only-light" alt="NumPy v2.3.dev0 Manual - Home"/>
<img src="../_static/numpylogo_dark.svg" class="logo__image only-dark pst-js-only" alt="NumPy v2.3.dev0 Manual - Home"/>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../user/index.html">
User Guide
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
API reference
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../building/index.html">
Building from source
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../dev/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../release.html">
Release notes
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://numpy.org/numpy-tutorials/">
Learn
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button"
data-bs-toggle="dropdown" aria-expanded="false"
aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-external" href="https://numpy.org/neps">
NEPs
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button></div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../user/index.html">
User Guide
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
API reference
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../building/index.html">
Building from source
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../dev/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../release.html">
Release notes
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://numpy.org/numpy-tutorials/">
Learn
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://numpy.org/neps">
NEPs
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button></div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 current active has-children"><a class="reference internal" href="module_structure.html">NumPy’s module structure</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="routines.exceptions.html">numpy.exceptions</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.fft.html">numpy.fft</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.linalg.html">numpy.linalg</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.polynomials-package.html">numpy.polynomial</a></li>
<li class="toctree-l2"><a class="reference internal" href="random/index.html">numpy.random</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.strings.html">numpy.strings</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.testing.html">numpy.testing</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">numpy.typing</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.ctypeslib.html">numpy.ctypeslib</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.dtypes.html">numpy.dtypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.emath.html">numpy.emath</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.lib.html">numpy.lib</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.rec.html">numpy.rec</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.version.html">numpy.version</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.char.html">numpy.char</a></li>
<li class="toctree-l2"><a class="reference internal" href="distutils.html">numpy.distutils</a></li>
<li class="toctree-l2"><a class="reference internal" href="../f2py/index.html">numpy.f2py</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.ma.html">numpy.ma</a></li>
<li class="toctree-l2"><a class="reference internal" href="routines.matlib.html">numpy.matlib</a></li>
</ul>
</details></li>
</ul>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="arrays.html">Array objects</a></li>
</ul>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="ufuncs.html">Universal functions (<code class="xref py py-class docutils literal notranslate"><span class="pre">ufunc</span></code>)</a></li>
</ul>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="routines.html">Routines and objects by topic</a></li>
</ul>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 current active"><a class="current reference internal" href="#">Typing (<code class="xref py py-mod docutils literal notranslate"><span class="pre">numpy.typing</span></code>)</a></li>
<li class="toctree-l1"><a class="reference internal" href="distutils.html">Packaging</a></li>
</ul>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="c-api/index.html">NumPy C-API</a></li>
</ul>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="array_api.html">Array API standard compatibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="simd/index.html">CPU/SIMD optimizations</a></li>
<li class="toctree-l1"><a class="reference internal" href="thread_safety.html">Thread Safety</a></li>
<li class="toctree-l1"><a class="reference internal" href="global_state.html">Global Configuration Options</a></li>
<li class="toctree-l1"><a class="reference internal" href="security.html">NumPy security</a></li>
<li class="toctree-l1"><a class="reference internal" href="distutils_status_migration.html">Status of <code class="docutils literal notranslate"><span class="pre">numpy.distutils</span></code> and migration advice</a></li>
<li class="toctree-l1"><a class="reference internal" href="distutils_guide.html"><code class="docutils literal notranslate"><span class="pre">numpy.distutils</span></code> user guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="swig.html">NumPy and SWIG</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
<div class="sidebar-primary-item">
<div id="ethical-ad-placement"
class="flat"
data-ea-publisher="readthedocs"
data-ea-type="readthedocs-sidebar"
data-ea-manual="true">
</div></div>
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">NumPy reference</a></li>
<li class="breadcrumb-item"><a href="module_structure.html" class="nav-link">NumPy’s module structure</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Typing (<code class="xref py py-mod docutils literal notranslate"><span class="pre">numpy.typing</span></code>)</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="typing-numpy-typing">
<span id="module-numpy.typing"></span><span id="typing"></span><h1>Typing (<a class="reference internal" href="#module-numpy.typing" title="numpy.typing"><code class="xref py py-mod docutils literal notranslate"><span class="pre">numpy.typing</span></code></a>)<a class="headerlink" href="#typing-numpy-typing" title="Link to this heading">#</a></h1>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.20.</span></p>
</div>
<p>Large parts of the NumPy API have <span class="target" id="index-0"></span><a class="pep reference external" href="https://peps.python.org/pep-0484/"><strong>PEP 484</strong></a>-style type annotations. In
addition a number of type aliases are available to users, most prominently
the two below:</p>
<ul class="simple">
<li><p><a class="reference internal" href="#numpy.typing.ArrayLike" title="numpy.typing.ArrayLike"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ArrayLike</span></code></a>: objects that can be converted to arrays</p></li>
<li><p><a class="reference internal" href="#numpy.typing.DTypeLike" title="numpy.typing.DTypeLike"><code class="xref py py-obj docutils literal notranslate"><span class="pre">DTypeLike</span></code></a>: objects that can be converted to dtypes</p></li>
</ul>
<section id="mypy-plugin">
<h2>Mypy plugin<a class="headerlink" href="#mypy-plugin" title="Link to this heading">#</a></h2>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.21.</span></p>
</div>
<p id="module-numpy.typing.mypy_plugin">A <a class="reference external" href="https://mypy-lang.org/">mypy</a> plugin for managing a number of platform-specific annotations.
Its functionality can be split into three distinct parts:</p>
<ul>
<li><p>Assigning the (platform-dependent) precisions of certain <a class="reference internal" href="arrays.scalars.html#numpy.number" title="numpy.number"><code class="xref py py-obj docutils literal notranslate"><span class="pre">number</span></code></a>
subclasses, including the likes of <a class="reference internal" href="arrays.scalars.html#numpy.int_" title="numpy.int_"><code class="xref py py-obj docutils literal notranslate"><span class="pre">int_</span></code></a>, <a class="reference internal" href="arrays.scalars.html#numpy.intp" title="numpy.intp"><code class="xref py py-obj docutils literal notranslate"><span class="pre">intp</span></code></a> and
<a class="reference internal" href="arrays.scalars.html#numpy.longlong" title="numpy.longlong"><code class="xref py py-obj docutils literal notranslate"><span class="pre">longlong</span></code></a>. See the documentation on
<a class="reference internal" href="arrays.scalars.html#arrays-scalars-built-in"><span class="std std-ref">scalar types</span></a> for a comprehensive overview
of the affected classes. Without the plugin the precision of all relevant
classes will be inferred as <a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Any</span></code></a>.</p></li>
<li><p>Removing all extended-precision <a class="reference internal" href="arrays.scalars.html#numpy.number" title="numpy.number"><code class="xref py py-obj docutils literal notranslate"><span class="pre">number</span></code></a> subclasses that are
unavailable for the platform in question. Most notably this includes the
likes of <a class="reference internal" href="arrays.scalars.html#numpy.float128" title="numpy.float128"><code class="xref py py-obj docutils literal notranslate"><span class="pre">float128</span></code></a> and <a class="reference internal" href="arrays.scalars.html#numpy.complex256" title="numpy.complex256"><code class="xref py py-obj docutils literal notranslate"><span class="pre">complex256</span></code></a>. Without the plugin <em>all</em>
extended-precision types will, as far as mypy is concerned, be available
to all platforms.</p></li>
<li><p>Assigning the (platform-dependent) precision of <a class="reference internal" href="routines.ctypeslib.html#numpy.ctypeslib.c_intp" title="numpy.ctypeslib.c_intp"><code class="xref py py-obj docutils literal notranslate"><span class="pre">c_intp</span></code></a>.
Without the plugin the type will default to <a class="reference external" href="https://docs.python.org/3/library/ctypes.html#ctypes.c_int64" title="(in Python v3.13)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ctypes.c_int64</span></code></a>.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.22.</span></p>
</div>
</li>
</ul>
<div class="deprecated">
<p><span class="versionmodified deprecated">Deprecated since version 2.3.</span></p>
</div>
<section id="examples">
<h3>Examples<a class="headerlink" href="#examples" title="Link to this heading">#</a></h3>
<p>To enable the plugin, one must add it to their mypy <a class="reference external" href="https://mypy.readthedocs.io/en/stable/config_file.html">configuration file</a>:</p>
<div class="highlight-ini notranslate"><div class="highlight"><pre><span></span><span class="k">[mypy]</span>
<span class="na">plugins</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">numpy.typing.mypy_plugin</span>
</pre></div>
</div>
</section>
</section>
<section id="differences-from-the-runtime-numpy-api">
<h2>Differences from the runtime NumPy API<a class="headerlink" href="#differences-from-the-runtime-numpy-api" title="Link to this heading">#</a></h2>
<p>NumPy is very flexible. Trying to describe the full range of
possibilities statically would result in types that are not very
helpful. For that reason, the typed NumPy API is often stricter than
the runtime NumPy API. This section describes some notable
differences.</p>
<section id="arraylike">
<h3>ArrayLike<a class="headerlink" href="#arraylike" title="Link to this heading">#</a></h3>
<p>The <a class="reference internal" href="#numpy.typing.ArrayLike" title="numpy.typing.ArrayLike"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ArrayLike</span></code></a> type tries to avoid creating object arrays. For
example,</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">x</span><span class="o">**</span><span class="mi">2</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">))</span>
<span class="go">array(<generator object <genexpr> at ...>, dtype=object)</span>
</pre></div>
</div>
<p>is valid NumPy code which will create a 0-dimensional object
array. Type checkers will complain about the above example when using
the NumPy types however. If you really intended to do the above, then
you can either use a <code class="docutils literal notranslate"><span class="pre">#</span> <span class="pre">type:</span> <span class="pre">ignore</span></code> comment:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">x</span><span class="o">**</span><span class="mi">2</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">))</span> <span class="c1"># type: ignore</span>
</pre></div>
</div>
<p>or explicitly type the array like object as <a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.13)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Any</span></code></a>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">Any</span>
<span class="gp">>>> </span><span class="n">array_like</span><span class="p">:</span> <span class="n">Any</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span><span class="o">**</span><span class="mi">2</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">array_like</span><span class="p">)</span>
<span class="go">array(<generator object <genexpr> at ...>, dtype=object)</span>
</pre></div>
</div>
</section>
<section id="ndarray">
<h3>ndarray<a class="headerlink" href="#ndarray" title="Link to this heading">#</a></h3>
<p>It’s possible to mutate the dtype of an array at runtime. For example,
the following code is valid:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">x</span><span class="o">.</span><span class="n">dtype</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">bool</span>
</pre></div>
</div>
<p>This sort of mutation is not allowed by the types. Users who want to
write statically typed code should instead use the <a class="reference internal" href="generated/numpy.ndarray.view.html#numpy.ndarray.view" title="numpy.ndarray.view"><code class="xref py py-obj docutils literal notranslate"><span class="pre">numpy.ndarray.view</span></code></a>
method to create a view of the array with a different dtype.</p>
</section>
<section id="dtypelike">
<h3>DTypeLike<a class="headerlink" href="#dtypelike" title="Link to this heading">#</a></h3>
<p>The <a class="reference internal" href="#numpy.typing.DTypeLike" title="numpy.typing.DTypeLike"><code class="xref py py-obj docutils literal notranslate"><span class="pre">DTypeLike</span></code></a> type tries to avoid creation of dtype objects using
dictionary of fields like below:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dtype</span><span class="p">({</span><span class="s2">"field1"</span><span class="p">:</span> <span class="p">(</span><span class="nb">float</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="s2">"field2"</span><span class="p">:</span> <span class="p">(</span><span class="nb">int</span><span class="p">,</span> <span class="mi">3</span><span class="p">)})</span>
</pre></div>
</div>
<p>Although this is valid NumPy code, the type checker will complain about it,
since its usage is discouraged.
Please see : <a class="reference internal" href="arrays.dtypes.html#arrays-dtypes"><span class="std std-ref">Data type objects</span></a></p>
</section>
<section id="number-precision">
<h3>Number precision<a class="headerlink" href="#number-precision" title="Link to this heading">#</a></h3>
<p>The precision of <a class="reference internal" href="arrays.scalars.html#numpy.number" title="numpy.number"><code class="xref py py-obj docutils literal notranslate"><span class="pre">numpy.number</span></code></a> subclasses is treated as a invariant generic
parameter (see <a class="reference internal" href="#numpy.typing.NBitBase" title="numpy.typing.NBitBase"><code class="xref py py-class docutils literal notranslate"><span class="pre">NBitBase</span></code></a>), simplifying the annotating of processes
involving precision-based casting.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">TypeVar</span>
<span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">numpy.typing</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">npt</span>
<span class="gp">>>> </span><span class="n">T</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">"T"</span><span class="p">,</span> <span class="n">bound</span><span class="o">=</span><span class="n">npt</span><span class="o">.</span><span class="n">NBitBase</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">a</span><span class="p">:</span> <span class="s2">"np.floating[T]"</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="s2">"np.floating[T]"</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"np.floating[T]"</span><span class="p">:</span>
<span class="gp">... </span> <span class="o">...</span>
</pre></div>
</div>
<p>Consequently, the likes of <a class="reference internal" href="arrays.scalars.html#numpy.float16" title="numpy.float16"><code class="xref py py-obj docutils literal notranslate"><span class="pre">float16</span></code></a>, <a class="reference internal" href="arrays.scalars.html#numpy.float32" title="numpy.float32"><code class="xref py py-obj docutils literal notranslate"><span class="pre">float32</span></code></a> and
<a class="reference internal" href="arrays.scalars.html#numpy.float64" title="numpy.float64"><code class="xref py py-obj docutils literal notranslate"><span class="pre">float64</span></code></a> are still sub-types of <a class="reference internal" href="arrays.scalars.html#numpy.floating" title="numpy.floating"><code class="xref py py-obj docutils literal notranslate"><span class="pre">floating</span></code></a>, but, contrary to
runtime, they’re not necessarily considered as sub-classes.</p>
</section>
<section id="timedelta64">
<h3>Timedelta64<a class="headerlink" href="#timedelta64" title="Link to this heading">#</a></h3>
<p>The <a class="reference internal" href="arrays.scalars.html#numpy.timedelta64" title="numpy.timedelta64"><code class="xref py py-obj docutils literal notranslate"><span class="pre">timedelta64</span></code></a> class is not considered a subclass of
<a class="reference internal" href="arrays.scalars.html#numpy.signedinteger" title="numpy.signedinteger"><code class="xref py py-obj docutils literal notranslate"><span class="pre">signedinteger</span></code></a>, the former only inheriting from <a class="reference internal" href="arrays.scalars.html#numpy.generic" title="numpy.generic"><code class="xref py py-obj docutils literal notranslate"><span class="pre">generic</span></code></a>
while static type checking.</p>
</section>
<section id="d-arrays">
<h3>0D arrays<a class="headerlink" href="#d-arrays" title="Link to this heading">#</a></h3>
<p>During runtime numpy aggressively casts any passed 0D arrays into their
corresponding <a class="reference internal" href="arrays.scalars.html#numpy.generic" title="numpy.generic"><code class="xref py py-obj docutils literal notranslate"><span class="pre">generic</span></code></a> instance. Until the introduction of shape
typing (see <span class="target" id="index-1"></span><a class="pep reference external" href="https://peps.python.org/pep-0646/"><strong>PEP 646</strong></a>) it is unfortunately not possible to make the
necessary distinction between 0D and >0D arrays. While thus not strictly
correct, all operations that can potentially perform a 0D-array -> scalar
cast are currently annotated as exclusively returning an <a class="reference internal" href="generated/numpy.ndarray.html#numpy.ndarray" title="numpy.ndarray"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray</span></code></a>.</p>
<p>If it is known in advance that an operation <em>will</em> perform a
0D-array -> scalar cast, then one can consider manually remedying the
situation with either <a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.cast" title="(in Python v3.13)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">typing.cast</span></code></a> or a <code class="docutils literal notranslate"><span class="pre">#</span> <span class="pre">type:</span> <span class="pre">ignore</span></code> comment.</p>
</section>
<section id="record-array-dtypes">
<h3>Record array dtypes<a class="headerlink" href="#record-array-dtypes" title="Link to this heading">#</a></h3>
<p>The dtype of <a class="reference internal" href="generated/numpy.recarray.html#numpy.recarray" title="numpy.recarray"><code class="xref py py-obj docutils literal notranslate"><span class="pre">numpy.recarray</span></code></a>, and the <a class="reference internal" href="routines.array-creation.html#routines-array-creation-rec"><span class="std std-ref">Creating record arrays</span></a>
functions in general, can be specified in one of two ways:</p>
<ul class="simple">
<li><p>Directly via the <code class="docutils literal notranslate"><span class="pre">dtype</span></code> argument.</p></li>
<li><p>With up to five helper arguments that operate via <a class="reference internal" href="generated/numpy.rec.format_parser.html#numpy.rec.format_parser" title="numpy.rec.format_parser"><code class="xref py py-obj docutils literal notranslate"><span class="pre">numpy.rec.format_parser</span></code></a>:
<code class="docutils literal notranslate"><span class="pre">formats</span></code>, <code class="docutils literal notranslate"><span class="pre">names</span></code>, <code class="docutils literal notranslate"><span class="pre">titles</span></code>, <code class="docutils literal notranslate"><span class="pre">aligned</span></code> and <code class="docutils literal notranslate"><span class="pre">byteorder</span></code>.</p></li>
</ul>
<p>These two approaches are currently typed as being mutually exclusive,
<em>i.e.</em> if <code class="docutils literal notranslate"><span class="pre">dtype</span></code> is specified than one may not specify <code class="docutils literal notranslate"><span class="pre">formats</span></code>.
While this mutual exclusivity is not (strictly) enforced during runtime,
combining both dtype specifiers can lead to unexpected or even downright
buggy behavior.</p>
</section>
</section>
<section id="api">
<h2>API<a class="headerlink" href="#api" title="Link to this heading">#</a></h2>
<dl class="py data">
<dt class="sig sig-object py" id="numpy.typing.ArrayLike">
<span class="sig-prename descclassname"><span class="pre">numpy.typing.</span></span><span class="sig-name descname"><span class="pre">ArrayLike</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">typing.Union[...]</span></em><a class="headerlink" href="#numpy.typing.ArrayLike" title="Link to this definition">#</a></dt>
<dd><p>A <a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Union" title="(in Python v3.13)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Union</span></code></a> representing objects that can be coerced
into an <a class="reference internal" href="generated/numpy.ndarray.html#numpy.ndarray" title="numpy.ndarray"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ndarray</span></code></a>.</p>
<p>Among others this includes the likes of:</p>
<ul class="simple">
<li><p>Scalars.</p></li>
<li><p>(Nested) sequences.</p></li>
<li><p>Objects implementing the <em class="xref py py-obj">__array__</em> protocol.</p></li>
</ul>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.20.</span></p>
</div>
<div class="admonition-see-also admonition">
<p class="admonition-title">See Also</p>
<dl class="simple">
<dt><a class="reference internal" href="../glossary.html#term-array_like"><span class="xref std std-term">array_like</span></a>:</dt><dd><p>Any scalar or sequence that can be interpreted as an ndarray.</p>
</dd>
</dl>
</div>
<p class="rubric">Examples</p>
</dd></dl>
<div class="try_examples_outer_container docutils container" id="948564c2-70c9-4646-8782-9391f119cff2">
<div class="try_examples_button_container"><button class="try_examples_button" onclick="window.tryExamplesShowIframe('948564c2-70c9-4646-8782-9391f119cff2','af894775-7775-415c-9e05-03e6546d81e0','0196224b-ba00-44ed-9cd3-bc8aa8577f92','../lite/tree/../notebooks/index.html?path=c333e6b6_9b35_43ff_95a0_094af37afc2e.ipynb','None')">Try it in your browser!</button></div><div class="try_examples_content docutils container">
<blockquote>
<div><div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">numpy.typing</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">npt</span>
<span class="gp">>>> </span><span class="k">def</span><span class="w"> </span><span class="nf">as_array</span><span class="p">(</span><span class="n">a</span><span class="p">:</span> <span class="n">npt</span><span class="o">.</span><span class="n">ArrayLike</span><span class="p">)</span> <span class="o">-></span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">:</span>
<span class="gp">... </span> <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
<dl class="py data">
<dt class="sig sig-object py" id="numpy.typing.DTypeLike">
<span class="sig-prename descclassname"><span class="pre">numpy.typing.</span></span><span class="sig-name descname"><span class="pre">DTypeLike</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">typing.Union[...]</span></em><a class="headerlink" href="#numpy.typing.DTypeLike" title="Link to this definition">#</a></dt>
<dd><p>A <a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Union" title="(in Python v3.13)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Union</span></code></a> representing objects that can be coerced
into a <a class="reference internal" href="generated/numpy.dtype.html#numpy.dtype" title="numpy.dtype"><code class="xref py py-obj docutils literal notranslate"><span class="pre">dtype</span></code></a>.</p>
<p>Among others this includes the likes of:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://docs.python.org/3/library/functions.html#type" title="(in Python v3.13)"><code class="xref py py-class docutils literal notranslate"><span class="pre">type</span></code></a> objects.</p></li>
<li><p>Character codes or the names of <a class="reference external" href="https://docs.python.org/3/library/functions.html#type" title="(in Python v3.13)"><code class="xref py py-class docutils literal notranslate"><span class="pre">type</span></code></a> objects.</p></li>
<li><p>Objects with the <code class="docutils literal notranslate"><span class="pre">.dtype</span></code> attribute.</p></li>
</ul>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.20.</span></p>
</div>
<div class="admonition-see-also admonition">
<p class="admonition-title">See Also</p>
<dl class="simple">
<dt><a class="reference internal" href="arrays.dtypes.html#arrays-dtypes-constructing"><span class="std std-ref">Specifying and constructing data types</span></a></dt><dd><p>A comprehensive overview of all objects that can be coerced
into data types.</p>
</dd>
</dl>
</div>
<p class="rubric">Examples</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">numpy.typing</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">npt</span>
<span class="gp">>>> </span><span class="k">def</span><span class="w"> </span><span class="nf">as_dtype</span><span class="p">(</span><span class="n">d</span><span class="p">:</span> <span class="n">npt</span><span class="o">.</span><span class="n">DTypeLike</span><span class="p">)</span> <span class="o">-></span> <span class="n">np</span><span class="o">.</span><span class="n">dtype</span><span class="p">:</span>
<span class="gp">... </span> <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">dtype</span><span class="p">(</span><span class="n">d</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>
<dl class="py data">
<dt class="sig sig-object py" id="numpy.typing.NDArray">
<span class="sig-prename descclassname"><span class="pre">numpy.typing.</span></span><span class="sig-name descname"><span class="pre">NDArray</span></span><em class="property"><span class="w"> </span><span class="p"><span class="pre">=</span></span><span class="w"> </span><span class="pre">numpy.ndarray[tuple[int,</span> <span class="pre">...],</span> <span class="pre">numpy.dtype[+_ScalarT_co]]</span></em><a class="headerlink" href="#numpy.typing.NDArray" title="Link to this definition">#</a></dt>
<dd><p>A <a class="reference internal" href="generated/numpy.ndarray.html#numpy.ndarray" title="numpy.ndarray"><code class="xref py py-obj docutils literal notranslate"><span class="pre">np.ndarray[tuple[int,</span> <span class="pre">...],</span> <span class="pre">np.dtype[+ScalarType]]</span></code></a>
type alias <a class="reference external" href="https://docs.python.org/3/glossary.html#term-generic-type" title="(in Python v3.13)"><span class="xref std std-term">generic</span></a> w.r.t. its
<a class="reference internal" href="generated/numpy.dtype.type.html#numpy.dtype.type" title="numpy.dtype.type"><code class="xref py py-obj docutils literal notranslate"><span class="pre">dtype.type</span></code></a>.</p>
<p>Can be used during runtime for typing arrays with a given dtype
and unspecified shape.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.21.</span></p>
</div>
<p class="rubric">Examples</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">numpy.typing</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">npt</span>
<span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">npt</span><span class="o">.</span><span class="n">NDArray</span><span class="p">)</span>
<span class="go">numpy.ndarray[tuple[int, ...], numpy.dtype[+_ScalarT_co]]</span>
<span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">npt</span><span class="o">.</span><span class="n">NDArray</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">float64</span><span class="p">])</span>
<span class="go">numpy.ndarray[tuple[int, ...], numpy.dtype[numpy.float64]]</span>
<span class="gp">>>> </span><span class="n">NDArrayInt</span> <span class="o">=</span> <span class="n">npt</span><span class="o">.</span><span class="n">NDArray</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">int_</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">a</span><span class="p">:</span> <span class="n">NDArrayInt</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">def</span><span class="w"> </span><span class="nf">func</span><span class="p">(</span><span class="n">a</span><span class="p">:</span> <span class="n">npt</span><span class="o">.</span><span class="n">ArrayLike</span><span class="p">)</span> <span class="o">-></span> <span class="n">npt</span><span class="o">.</span><span class="n">NDArray</span><span class="p">[</span><span class="n">Any</span><span class="p">]:</span>
<span class="gp">... </span> <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="numpy.typing.NBitBase">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">numpy.typing.</span></span><span class="sig-name descname"><span class="pre">NBitBase</span></span><a class="reference external" href="https://github.com/numpy/numpy/blob/main/numpy/_typing/_nbit_base.py"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#numpy.typing.NBitBase" title="Link to this definition">#</a></dt>
<dd><p>A type representing <a class="reference internal" href="arrays.scalars.html#numpy.number" title="numpy.number"><code class="xref py py-obj docutils literal notranslate"><span class="pre">numpy.number</span></code></a> precision during static type checking.</p>
<p>Used exclusively for the purpose static type checking, <a class="reference internal" href="#numpy.typing.NBitBase" title="numpy.typing.NBitBase"><code class="xref py py-obj docutils literal notranslate"><span class="pre">NBitBase</span></code></a>
represents the base of a hierarchical set of subclasses.
Each subsequent subclass is herein used for representing a lower level
of precision, <em>e.g.</em> <code class="docutils literal notranslate"><span class="pre">64Bit</span> <span class="pre">></span> <span class="pre">32Bit</span> <span class="pre">></span> <span class="pre">16Bit</span></code>.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.20.</span></p>
</div>
<p class="rubric">Examples</p>
<div class="try_examples_outer_container docutils container" id="a2402b3d-ba94-4cf8-8476-986af5e71a47">
<div class="try_examples_button_container"><button class="try_examples_button" onclick="window.tryExamplesShowIframe('a2402b3d-ba94-4cf8-8476-986af5e71a47','4ae940b6-f55a-4d29-b827-a1766497308c','789661d4-73fe-4fc9-ab83-7d2a2e93b9ee','../lite/tree/../notebooks/index.html?path=2a07b4a5_46a6_4321_a7e7_5dd7a1ca7d2d.ipynb','None')">Try it in your browser!</button></div><div class="try_examples_content docutils container">
<p>Below is a typical usage example: <a class="reference internal" href="#numpy.typing.NBitBase" title="numpy.typing.NBitBase"><code class="xref py py-obj docutils literal notranslate"><span class="pre">NBitBase</span></code></a> is herein used for annotating
a function that takes a float and integer of arbitrary precision
as arguments and returns a new float of whichever precision is largest
(<em>e.g.</em> <code class="docutils literal notranslate"><span class="pre">np.float16</span> <span class="pre">+</span> <span class="pre">np.int64</span> <span class="pre">-></span> <span class="pre">np.float64</span></code>).</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span><span class="w"> </span><span class="nn">__future__</span><span class="w"> </span><span class="kn">import</span> <span class="n">annotations</span>
<span class="gp">>>> </span><span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">TypeVar</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span>
<span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="gp">>>> </span><span class="kn">import</span><span class="w"> </span><span class="nn">numpy.typing</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">npt</span>
<span class="gp">>>> </span><span class="n">S</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">"S"</span><span class="p">,</span> <span class="n">bound</span><span class="o">=</span><span class="n">npt</span><span class="o">.</span><span class="n">NBitBase</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">T</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">"T"</span><span class="p">,</span> <span class="n">bound</span><span class="o">=</span><span class="n">npt</span><span class="o">.</span><span class="n">NBitBase</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">def</span><span class="w"> </span><span class="nf">add</span><span class="p">(</span><span class="n">a</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">floating</span><span class="p">[</span><span class="n">S</span><span class="p">],</span> <span class="n">b</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">integer</span><span class="p">[</span><span class="n">T</span><span class="p">])</span> <span class="o">-></span> <span class="n">np</span><span class="o">.</span><span class="n">floating</span><span class="p">[</span><span class="n">S</span> <span class="o">|</span> <span class="n">T</span><span class="p">]:</span>
<span class="gp">... </span> <span class="k">return</span> <span class="n">a</span> <span class="o">+</span> <span class="n">b</span>
<span class="gp">>>> </span><span class="n">a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">float16</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">b</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">int64</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">out</span> <span class="o">=</span> <span class="n">add</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="gp">... </span> <span class="n">reveal_locals</span><span class="p">()</span>
<span class="gp">... </span> <span class="c1"># note: Revealed local types are:</span>
<span class="gp">... </span> <span class="c1"># note: a: numpy.floating[numpy.typing._16Bit*]</span>
<span class="gp">... </span> <span class="c1"># note: b: numpy.signedinteger[numpy.typing._64Bit*]</span>
<span class="gp">... </span> <span class="c1"># note: out: numpy.floating[numpy.typing._64Bit*]</span>
</pre></div>
</div>
</div>
</div>
<div id="789661d4-73fe-4fc9-ab83-7d2a2e93b9ee" class="try_examples_outer_iframe hidden"><div class="try_examples_button_container"><button class="try_examples_button" onclick="window.tryExamplesHideIframe('a2402b3d-ba94-4cf8-8476-986af5e71a47','789661d4-73fe-4fc9-ab83-7d2a2e93b9ee')">Go Back</button><button class="try_examples_button" onclick="window.openInNewTab('a2402b3d-ba94-4cf8-8476-986af5e71a47','789661d4-73fe-4fc9-ab83-7d2a2e93b9ee')">Open In Tab</button></div><div id="4ae940b6-f55a-4d29-b827-a1766497308c" class="jupyterlite_sphinx_iframe_container"></div></div><script>document.addEventListener("DOMContentLoaded", function() {window.loadTryExamplesConfig("../try_examples.json");});</script></dd></dl>
</div>
</div>
<div id="0196224b-ba00-44ed-9cd3-bc8aa8577f92" class="try_examples_outer_iframe hidden"><div class="try_examples_button_container"><button class="try_examples_button" onclick="window.tryExamplesHideIframe('948564c2-70c9-4646-8782-9391f119cff2','0196224b-ba00-44ed-9cd3-bc8aa8577f92')">Go Back</button><button class="try_examples_button" onclick="window.openInNewTab('948564c2-70c9-4646-8782-9391f119cff2','0196224b-ba00-44ed-9cd3-bc8aa8577f92')">Open In Tab</button></div><div id="af894775-7775-415c-9e05-03e6546d81e0" class="jupyterlite_sphinx_iframe_container"></div></div><script>document.addEventListener("DOMContentLoaded", function() {window.loadTryExamplesConfig("../try_examples.json");});</script></section>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="testing.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Testing guidelines</p>
</div>
</a>
<a class="right-next"
href="routines.ctypeslib.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">ctypes foreign function interface (<code class="xref py py-mod docutils literal notranslate"><span class="pre">numpy.ctypeslib</span></code>)</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#mypy-plugin">Mypy plugin</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#examples">Examples</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#differences-from-the-runtime-numpy-api">Differences from the runtime NumPy API</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#arraylike">ArrayLike</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#ndarray">ndarray</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#dtypelike">DTypeLike</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#number-precision">Number precision</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#timedelta64">Timedelta64</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#d-arrays">0D arrays</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#record-array-dtypes">Record array dtypes</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#api">API</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#numpy.typing.ArrayLike"><code class="docutils literal notranslate"><span class="pre">ArrayLike</span></code></a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#numpy.typing.DTypeLike"><code class="docutils literal notranslate"><span class="pre">DTypeLike</span></code></a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#numpy.typing.NDArray"><code class="docutils literal notranslate"><span class="pre">NDArray</span></code></a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#numpy.typing.NBitBase"><code class="docutils literal notranslate"><span class="pre">NBitBase</span></code></a></li>
</ul>
</li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<p class="copyright">
© Copyright 2008-2025, NumPy Developers.
<br/>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.2.6.
<br/>
</p>
</div>
</div>
<div class="footer-items__end">
<div class="footer-item">
<p class="theme-version">
<!-- # L10n: Setting the PST URL as an argument as this does not need to be localized -->
Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.16.1.
</p></div>
</div>
</div>
</footer>
</body>
</html>