-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathitkBSplineKernelFunction.h.nick
executable file
·189 lines (163 loc) · 5.42 KB
/
itkBSplineKernelFunction.h.nick
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkBSplineKernelFunction.h.nick,v $
Language: C++
Date: $Date: 2008/10/18 00:20:03 $
Version: $Revision: 1.1.1.1 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkBSplineKernelFunction_h
#define _itkBSplineKernelFunction_h
#include "itkKernelFunction.h"
#include "itkNumericTraits.h"
#include "vnl/vnl_math.h"
#include "vnl/vnl_real_polynomial.h"
#include "vnl/vnl_matrix.h"
namespace itk
{
/** \class BSplineKernelFunction
* \brief BSpline kernel used for density estimation and nonparameteric
* regression.
*
* This class enscapsulates BSpline kernel for
* density estimation or nonparameteric regression.
* See documentation for KernelFunction for more details.
*
* This class is templated over the spline order to cohere with
* the previous incarnation of this class. One can change the
* order during an instantiation's existence. Note that
* other authors have defined the B-spline order as being the
* degree of spline + 1. In the ITK context (e.g. in this
* class), the spline order is equivalent to the degree of
* the spline.
*
* \sa KernelFunction
*
* \ingroup Functions
*/
template <unsigned int VSplineOrder = 3>
class ITK_EXPORT BSplineKernelFunction
: public KernelFunction
{
public:
/** Standard class typedefs. */
typedef BSplineKernelFunction Self;
typedef KernelFunction Superclass;
typedef SmartPointer<Self> Pointer;
/** Method for creation through the object factory. */
itkNewMacro( Self );
/** Run-time type information (and related methods). */
itkTypeMacro( BSplineKernelFunction, KernelFunction );
typedef double RealType;
typedef vnl_vector<RealType> VectorType;
typedef vnl_real_polynomial PolynomialType;
typedef vnl_matrix<RealType> MatrixType;
/** Get/Sets the Spline Order */
void SetSplineOrder( unsigned int );
itkGetMacro( SplineOrder, unsigned int );
/** Evaluate the function. */
inline RealType Evaluate( const RealType & u ) const
{
RealType absValue = vnl_math_abs( u );
unsigned int which;
if ( this->m_SplineOrder % 2 == 0 )
{
which = static_cast<unsigned int>( absValue+0.5 );
}
else
{
which = static_cast<unsigned int>( absValue );
}
if ( which < this->m_BSplineShapeFunctions.rows() )
{
PolynomialType polynomial( m_BSplineShapeFunctions.get_row( which ) );
return polynomial.evaluate( absValue );
}
else
{
return NumericTraits<RealType>::Zero;
}
}
/** Evaluate the first derivative. */
inline RealType EvaluateDerivative( const double & u ) const
{
return this->EvaluateNthDerivative( u, 1 );
}
/** Evaluate the Nth derivative. */
inline RealType EvaluateNthDerivative( const double & u, unsigned int n ) const
{
RealType absValue = vnl_math_abs( u );
int which;
if ( this->m_SplineOrder % 2 == 0 )
{
which = static_cast<unsigned int>( absValue+0.5 );
}
else
{
which = static_cast<unsigned int>( absValue );
}
if ( which < this->m_BSplineShapeFunctions.rows() )
{
PolynomialType polynomial( this->m_BSplineShapeFunctions.get_row( which ) );
for ( unsigned int i = 0; i < n; i++ )
{
polynomial = polynomial.derivative();
}
RealType der = polynomial.evaluate( absValue );
if ( u < NumericTraits<RealType>::Zero && n % 2 != 0 )
{
return -der;
}
else
{
return der;
}
}
else
{
return NumericTraits<RealType>::Zero;
}
}
/**
* For a specific order, return the ceil( 0.5*(m_SplineOrder+1) )
* pieces of the single basis function centered at zero for positive
* parametric values.
*/
MatrixType GetShapeFunctions()
{
return this->m_BSplineShapeFunctions;
}
/**
* For a specific order, generate and return the (m_SplineOrder+1)
* pieces of the different basis functions in the [0, 1] interval.
*/
MatrixType GetShapeFunctionsInZeroToOneInterval();
protected:
BSplineKernelFunction();
~BSplineKernelFunction();
void PrintSelf( std::ostream& os, Indent indent ) const;
private:
BSplineKernelFunction( const Self& ); //purposely not implemented
void operator=( const Self& ); //purposely not implemented
/**
* For a specific order, generate the (m_SplineOrder+1) pieces of
* the single basis function centered at zero.
*/
void GenerateBSplineShapeFunctions( unsigned int );
/**
* Use the CoxDeBoor recursion relation to generate the piecewise
* polynomials which compose the basis function.
*/
PolynomialType CoxDeBoor( unsigned short, VectorType, unsigned int, unsigned int );
MatrixType m_BSplineShapeFunctions;
unsigned int m_SplineOrder;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkBSplineKernelFunction.txx"
#endif
#endif