Skip to content

Latest commit

 

History

History
557 lines (380 loc) · 17.1 KB

reshaping.rst

File metadata and controls

557 lines (380 loc) · 17.1 KB
.. currentmodule:: pandas
.. ipython:: python
   :suppress:

   import numpy as np
   np.random.seed(123456)
   from pandas import *
   options.display.max_rows=15
   from pandas.core.reshape import *
   import pandas.util.testing as tm
   randn = np.random.randn
   np.set_printoptions(precision=4, suppress=True)
   from pandas.tools.tile import *
   from pandas.compat import zip

Reshaping and Pivot Tables

Reshaping by pivoting DataFrame objects

.. ipython::
   :suppress:

   In [1]: import pandas.util.testing as tm; tm.N = 3

   In [2]: def unpivot(frame):
      ...:         N, K = frame.shape
      ...:         data = {'value' : frame.values.ravel('F'),
      ...:                 'variable' : np.asarray(frame.columns).repeat(N),
      ...:                 'date' : np.tile(np.asarray(frame.index), K)}
      ...:         columns = ['date', 'variable', 'value']
      ...:         return DataFrame(data, columns=columns)
      ...:

   In [3]: df = unpivot(tm.makeTimeDataFrame())

Data is often stored in CSV files or databases in so-called "stacked" or "record" format:

.. ipython:: python

   df


For the curious here is how the above DataFrame was created:

import pandas.util.testing as tm; tm.N = 3
def unpivot(frame):
    N, K = frame.shape
    data = {'value' : frame.values.ravel('F'),
            'variable' : np.asarray(frame.columns).repeat(N),
            'date' : np.tile(np.asarray(frame.index), K)}
    return DataFrame(data, columns=['date', 'variable', 'value'])
df = unpivot(tm.makeTimeDataFrame())

To select out everything for variable A we could do:

.. ipython:: python

   df[df['variable'] == 'A']

But suppose we wish to do time series operations with the variables. A better representation would be where the columns are the unique variables and an index of dates identifies individual observations. To reshape the data into this form, use the pivot function:

.. ipython:: python

   df.pivot(index='date', columns='variable', values='value')

If the values argument is omitted, and the input DataFrame has more than one column of values which are not used as column or index inputs to pivot, then the resulting "pivoted" DataFrame will have :ref:`hierarchical columns <advanced.hierarchical>` whose topmost level indicates the respective value column:

.. ipython:: python

   df['value2'] = df['value'] * 2
   pivoted = df.pivot('date', 'variable')
   pivoted

You of course can then select subsets from the pivoted DataFrame:

.. ipython:: python

   pivoted['value2']

Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.

Reshaping by stacking and unstacking

Closely related to the pivot function are the related stack and unstack functions currently available on Series and DataFrame. These functions are designed to work together with MultiIndex objects (see the section on :ref:`hierarchical indexing <advanced.hierarchical>`). Here are essentially what these functions do:

  • stack: "pivot" a level of the (possibly hierarchical) column labels, returning a DataFrame with an index with a new inner-most level of row labels.
  • unstack: inverse operation from stack: "pivot" a level of the (possibly hierarchical) row index to the column axis, producing a reshaped DataFrame with a new inner-most level of column labels.

The clearest way to explain is by example. Let's take a prior example data set from the hierarchical indexing section:

.. ipython:: python

   tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
                   'foo', 'foo', 'qux', 'qux'],
                  ['one', 'two', 'one', 'two',
                   'one', 'two', 'one', 'two']]))
   index = MultiIndex.from_tuples(tuples, names=['first', 'second'])
   df = DataFrame(randn(8, 2), index=index, columns=['A', 'B'])
   df2 = df[:4]
   df2

The stack function "compresses" a level in the DataFrame's columns to produce either:

  • A Series, in the case of a simple column Index
  • A DataFrame, in the case of a MultiIndex in the columns

If the columns have a MultiIndex, you can choose which level to stack. The stacked level becomes the new lowest level in a MultiIndex on the columns:

.. ipython:: python

   stacked = df2.stack()
   stacked

With a "stacked" DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack is unstack, which by default unstacks the last level:

.. ipython:: python

   stacked.unstack()
   stacked.unstack(1)
   stacked.unstack(0)

If the indexes have names, you can use the level names instead of specifying the level numbers:

.. ipython:: python

   stacked.unstack('second')

Notice that the stack and unstack methods implicitly sort the index levels involved. Hence a call to stack and then unstack, or viceversa, will result in a sorted copy of the original DataFrame or Series:

.. ipython:: python

   index = MultiIndex.from_product([[2,1], ['a', 'b']])
   df = DataFrame(randn(4), index=index, columns=['A'])
   df
   all(df.unstack().stack() == df.sort())

while the above code will raise a TypeError if the call to sort is removed.

Multiple Levels

You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is as if each level in the list were processed individually.

.. ipython:: python

    columns = MultiIndex.from_tuples([
            ('A', 'cat', 'long'), ('B', 'cat', 'long'),
            ('A', 'dog', 'short'), ('B', 'dog', 'short')
        ],
        names=['exp', 'animal', 'hair_length']
    )
    df = DataFrame(randn(4, 4), columns=columns)
    df

    df.stack(level=['animal', 'hair_length'])

The list of levels can contain either level names or level numbers (but not a mixture of the two).

.. ipython:: python

    # df.stack(level=['animal', 'hair_length'])
    # from above is equivalent to:
    df.stack(level=[1, 2])

Missing Data

These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by calling sortlevel, of course). Here is a more complex example:

.. ipython:: python

   columns = MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'),
                                     ('B', 'cat'), ('A', 'dog')],
                                    names=['exp', 'animal'])
   index = MultiIndex.from_product([('bar', 'baz', 'foo', 'qux'), ('one', 'two')],
                                   names=['first', 'second'])
   df = DataFrame(randn(8, 4), index=index, columns=columns)
   df2 = df.ix[[0, 1, 2, 4, 5, 7]]
   df2

As mentioned above, stack can be called with a level argument to select which level in the columns to stack:

.. ipython:: python

   df2.stack('exp')
   df2.stack('animal')

With a MultiIndex

Unstacking when the columns are a MultiIndex is also careful about doing the right thing:

.. ipython:: python

   df[:3].unstack(0)
   df2.unstack(1)

Reshaping by Melt

The :func:`~pandas.melt` function is useful to massage a DataFrame into a format where one or more columns are identifier variables, while all other columns, considered measured variables, are "unpivoted" to the row axis, leaving just two non-identifier columns, "variable" and "value". The names of those columns can be customized by supplying the var_name and value_name parameters.

For instance,

.. ipython:: python

   cheese = DataFrame({'first' : ['John', 'Mary'],
                       'last' : ['Doe', 'Bo'],
                       'height' : [5.5, 6.0],
                       'weight' : [130, 150]})
   cheese
   melt(cheese, id_vars=['first', 'last'])
   melt(cheese, id_vars=['first', 'last'], var_name='quantity')

Another way to transform is to use the wide_to_long panel data convenience function.

.. ipython:: python

  dft = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
                      "A1980" : {0 : "d", 1 : "e", 2 : "f"},
                      "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
                      "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
                      "X"     : dict(zip(range(3), np.random.randn(3)))
                     })
  dft["id"] = dft.index
  dft
  pd.wide_to_long(dft, ["A", "B"], i="id", j="year")

Combining with stats and GroupBy

It should be no shock that combining pivot / stack / unstack with GroupBy and the basic Series and DataFrame statistical functions can produce some very expressive and fast data manipulations.

.. ipython:: python

   df
   df.stack().mean(1).unstack()

   # same result, another way
   df.groupby(level=1, axis=1).mean()

   df.stack().groupby(level=1).mean()

   df.mean().unstack(0)


Pivot tables and cross-tabulations

The function pandas.pivot_table can be used to create spreadsheet-style pivot tables. See the :ref:`cookbook<cookbook.pivot>` for some advanced strategies

It takes a number of arguments

  • data: A DataFrame object
  • values: a column or a list of columns to aggregate
  • index: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
  • columns: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
  • aggfunc: function to use for aggregation, defaulting to numpy.mean

Consider a data set like this:

.. ipython:: python

   import datetime
   df = DataFrame({'A' : ['one', 'one', 'two', 'three'] * 6,
                   'B' : ['A', 'B', 'C'] * 8,
                   'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
                   'D' : np.random.randn(24),
                   'E' : np.random.randn(24),
                   'F' : [datetime.datetime(2013, i, 1) for i in range(1, 13)] +
                         [datetime.datetime(2013, i, 15) for i in range(1, 13)]})
   df

We can produce pivot tables from this data very easily:

.. ipython:: python

   pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
   pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum)
   pivot_table(df, values=['D','E'], index=['B'], columns=['A', 'C'], aggfunc=np.sum)

The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the values column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of hierarchy in the columns:

.. ipython:: python

   pivot_table(df, index=['A', 'B'], columns=['C'])

Also, you can use Grouper for index and columns keywords. For detail of Grouper, see :ref:`Grouping with a Grouper specification <groupby.specify>`.

.. ipython:: python

   pivot_table(df, values='D', index=Grouper(freq='M', key='F'), columns='C')

You can render a nice output of the table omitting the missing values by calling to_string if you wish:

.. ipython:: python

   table = pivot_table(df, index=['A', 'B'], columns=['C'])
   print(table.to_string(na_rep=''))

Note that pivot_table is also available as an instance method on DataFrame.

Cross tabulations

Use the crosstab function to compute a cross-tabulation of two (or more) factors. By default crosstab computes a frequency table of the factors unless an array of values and an aggregation function are passed.

It takes a number of arguments

  • index: array-like, values to group by in the rows
  • columns: array-like, values to group by in the columns
  • values: array-like, optional, array of values to aggregate according to the factors
  • aggfunc: function, optional, If no values array is passed, computes a frequency table
  • rownames: sequence, default None, must match number of row arrays passed
  • colnames: sequence, default None, if passed, must match number of column arrays passed
  • margins: boolean, default False, Add row/column margins (subtotals)

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified

For example:

.. ipython:: python

    foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'
    a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)
    b = np.array([one, one, two, one, two, one], dtype=object)
    c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)
    crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])

Adding margins (partial aggregates)

If you pass margins=True to pivot_table, special All columns and rows will be added with partial group aggregates across the categories on the rows and columns:

.. ipython:: python

   df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)

Tiling

The cut function computes groupings for the values of the input array and is often used to transform continuous variables to discrete or categorical variables:

.. ipython:: python

   ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])


   cut(ages, bins=3)

If the bins keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:

.. ipython:: python

   cut(ages, bins=[0, 18, 35, 70])


Computing indicator / dummy variables

To convert a categorical variable into a "dummy" or "indicator" DataFrame, for example a column in a DataFrame (a Series) which has k distinct values, can derive a DataFrame containing k columns of 1s and 0s:

.. ipython:: python

   df = DataFrame({'key': list('bbacab'), 'data1': range(6)})


   get_dummies(df['key'])

Sometimes it's useful to prefix the column names, for example when merging the result with the original DataFrame:

.. ipython:: python

   dummies = get_dummies(df['key'], prefix='key')
   dummies


   df[['data1']].join(dummies)

This function is often used along with discretization functions like cut:

.. ipython:: python

   values = randn(10)
   values


   bins = [0, 0.2, 0.4, 0.6, 0.8, 1]


   get_dummies(cut(values, bins))

See also :func:`Series.str.get_dummies <pandas.core.strings.StringMethods.get_dummies>`.

.. versionadded:: 0.15.0

:func:`get_dummies` also accepts a DataFrame. By default all categorical variables (categorical in the statistical sense, those with object or categorical dtype) are encoded as dummy variables.

.. ipython:: python

    df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
                       'C': [1, 2, 3]})
    pd.get_dummies(df)

All non-object columns are included untouched in the output.

You can control the columns that are encoded with the columns keyword.

.. ipython:: python

    pd.get_dummies(df, columns=['A'])

Notice that the B column is still included in the output, it just hasn't been encoded. You can drop B before calling get_dummies if you don't want to include it in the output.

As with the Series version, you can pass values for the prefix and prefix_sep. By default the column name is used as the prefix, and '_' as the prefix separator. You can specify prefix and prefix_sep in 3 ways

  • string: Use the same value for prefix or prefix_sep for each column to be encoded
  • list: Must be the same length as the number of columns being encoded.
  • dict: Mapping column name to prefix
.. ipython:: python

    simple = pd.get_dummies(df, prefix='new_prefix')
    simple
    from_list = pd.get_dummies(df, prefix=['from_A', 'from_B'])
    from_list
    from_dict = pd.get_dummies(df, prefix={'B': 'from_B', 'A': 'from_A'})
    from_dict

Factorizing values

To encode 1-d values as an enumerated type use factorize:

.. ipython:: python

   x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
   x
   labels, uniques = pd.factorize(x)
   labels
   uniques

Note that factorize is similar to numpy.unique, but differs in its handling of NaN:

Note

The following numpy.unique will fail under Python 3 with a TypeError because of an ordering bug. See also Here

.. ipython:: python

   pd.factorize(x, sort=True)
   np.unique(x, return_inverse=True)[::-1]

Note

If you just want to handle one column as a categorical variable (like R's factor), you can use df["cat_col"] = pd.Categorical(df["col"]) or df["cat_col"] = df["col"].astype("category"). For full docs on :class:`~pandas.Categorical`, see the :ref:`Categorical introduction <categorical>` and the :ref:`API documentation <api.categorical>`. This feature was introduced in version 0.15.