-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathscatter.py
345 lines (276 loc) · 10.1 KB
/
scatter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from typing import List, Optional, Tuple
import matplotlib.colors as mcolor
import napari
import numpy as np
from magicgui import magicgui
from magicgui.widgets import ComboBox
from .base import NapariMPLWidget
from .util import Interval
__all__ = ["ScatterWidget", "FeaturesScatterWidget", "FeaturesHistogramWidget"]
class ScatterBaseWidget(NapariMPLWidget):
# opacity value for the markers
_marker_alpha = 0.5
# flag set to True if histogram should be used
# for plotting large points
_histogram_for_large_data = True
# if the number of points is greater than this value,
# the scatter is plotted as a 2dhist
_threshold_to_switch_to_histogram = 500
def __init__(self, napari_viewer: napari.viewer.Viewer):
super().__init__(napari_viewer)
self.axes = self.canvas.figure.subplots()
self.update_layers(None)
def clear(self) -> None:
"""
Clear the axes.
"""
self.axes.clear()
def draw(self) -> None:
"""
Scatter the currently selected layers.
"""
data, x_axis_name, y_axis_name = self._get_data()
if len(data) == 0:
# don't plot if there isn't data
return
if self._histogram_for_large_data and (
data[0].size > self._threshold_to_switch_to_histogram
):
self.axes.hist2d(
data[0].ravel(),
data[1].ravel(),
bins=100,
norm=mcolor.LogNorm(),
)
else:
self.axes.scatter(data[0], data[1], alpha=self._marker_alpha)
self.axes.set_xlabel(x_axis_name)
self.axes.set_ylabel(y_axis_name)
def _get_data(self) -> Tuple[List[np.ndarray], str, str]:
"""Get the plot data.
This must be implemented on the subclass.
Returns
-------
data : np.ndarray
The list containing the scatter plot data.
x_axis_name : str
The label to display on the x axis
y_axis_name: str
The label to display on the y axis
"""
raise NotImplementedError
class ScatterWidget(ScatterBaseWidget):
"""
Widget to display scatter plot of two similarly shaped image layers.
If there are more than 500 data points, a 2D histogram is displayed instead
of a scatter plot, to avoid too many scatter points.
"""
n_layers_input = Interval(2, 2)
input_layer_types = (napari.layers.Image,)
def _get_data(self) -> Tuple[List[np.ndarray], str, str]:
"""Get the plot data.
Returns
-------
data : List[np.ndarray]
List contains the in view slice of X and Y axis images.
x_axis_name : str
The title to display on the x axis
y_axis_name: str
The title to display on the y axis
"""
data = [layer.data[self.current_z] for layer in self.layers]
x_axis_name = self.layers[0].name
y_axis_name = self.layers[1].name
return data, x_axis_name, y_axis_name
class FeaturesScatterWidget(ScatterBaseWidget):
n_layers_input = Interval(1, 1)
# All layers that have a .features attributes
input_layer_types = (
napari.layers.Labels,
napari.layers.Points,
napari.layers.Shapes,
napari.layers.Tracks,
napari.layers.Vectors,
)
def __init__(self, napari_viewer: napari.viewer.Viewer):
super().__init__(napari_viewer)
self._key_selection_widget = magicgui(
self._set_axis_keys,
x_axis_key={"choices": self._get_valid_axis_keys},
y_axis_key={"choices": self._get_valid_axis_keys},
call_button="plot",
)
self.layout().addWidget(self._key_selection_widget.native)
@property
def x_axis_key(self) -> Optional[str]:
"""Key to access x axis data from the FeaturesTable"""
return self._x_axis_key
@x_axis_key.setter
def x_axis_key(self, key: Optional[str]) -> None:
self._x_axis_key = key
self._draw()
@property
def y_axis_key(self) -> Optional[str]:
"""Key to access y axis data from the FeaturesTable"""
return self._y_axis_key
@y_axis_key.setter
def y_axis_key(self, key: Optional[str]) -> None:
self._y_axis_key = key
self._draw()
def _set_axis_keys(self, x_axis_key: str, y_axis_key: str) -> None:
"""Set both axis keys and then redraw the plot"""
self._x_axis_key = x_axis_key
self._y_axis_key = y_axis_key
self._draw()
def _get_valid_axis_keys(
self, combo_widget: Optional[ComboBox] = None
) -> List[str]:
"""
Get the valid axis keys from the layer FeatureTable.
Returns
-------
axis_keys : List[str]
The valid axis keys in the FeatureTable. If the table is empty
or there isn't a table, returns an empty list.
"""
if len(self.layers) == 0 or not (hasattr(self.layers[0], "features")):
return []
else:
return self.layers[0].features.keys()
def _get_data(self) -> Tuple[List[np.ndarray], str, str]:
"""Get the plot data.
Returns
-------
data : List[np.ndarray]
List contains X and Y columns from the FeatureTable. Returns
an empty array if nothing to plot.
x_axis_name : str
The title to display on the x axis. Returns
an empty string if nothing to plot.
y_axis_name: str
The title to display on the y axis. Returns
an empty string if nothing to plot.
"""
if not hasattr(self.layers[0], "features"):
# if the selected layer doesn't have a featuretable,
# skip draw
return [], "", ""
feature_table = self.layers[0].features
if (
(len(feature_table) == 0)
or (self.x_axis_key is None)
or (self.y_axis_key is None)
):
return [], "", ""
data_x = feature_table[self.x_axis_key]
data_y = feature_table[self.y_axis_key]
data = [data_x, data_y]
x_axis_name = self.x_axis_key.replace("_", " ")
y_axis_name = self.y_axis_key.replace("_", " ")
return data, x_axis_name, y_axis_name
def _on_update_layers(self) -> None:
"""
This is called when the layer selection changes by
``self.update_layers()``.
"""
if hasattr(self, "_key_selection_widget"):
self._key_selection_widget.reset_choices()
# reset the axis keys
self._x_axis_key = None
self._y_axis_key = None
class FeaturesHistogramWidget(NapariMPLWidget):
n_layers_input = Interval(1, 1)
# All layers that have a .features attributes
input_layer_types = (
napari.layers.Labels,
napari.layers.Points,
napari.layers.Shapes,
napari.layers.Tracks,
napari.layers.Vectors,
)
def __init__(self, napari_viewer: napari.viewer.Viewer):
super().__init__(napari_viewer)
self.axes = self.canvas.figure.subplots()
self._key_selection_widget = magicgui(
self._set_axis_keys,
x_axis_key={"choices": self._get_valid_axis_keys},
call_button="plot",
)
self.layout().addWidget(self._key_selection_widget.native)
self.update_layers(None)
def clear(self) -> None:
"""
Clear the axes.
"""
self.axes.clear()
self.layout().addWidget(self._key_selection_widget.native)
@property
def x_axis_key(self) -> Optional[str]:
"""Key to access x axis data from the FeaturesTable"""
return self._x_axis_key
@x_axis_key.setter
def x_axis_key(self, key: Optional[str]) -> None:
self._x_axis_key = key
self._draw()
def _set_axis_keys(self, x_axis_key: str) -> None:
"""Set both axis keys and then redraw the plot"""
self._x_axis_key = x_axis_key
self._draw()
def _get_valid_axis_keys(
self, combo_widget: Optional[ComboBox] = None
) -> List[str]:
"""
Get the valid axis keys from the layer FeatureTable.
Returns
-------
axis_keys : List[str]
The valid axis keys in the FeatureTable. If the table is empty
or there isn't a table, returns an empty list.
"""
if len(self.layers) == 0 or not (hasattr(self.layers[0], "features")):
return []
else:
return self.layers[0].features.keys()
def _get_data(self) -> Tuple[List[np.ndarray], str, str]:
"""Get the plot data.
Returns
-------
data : List[np.ndarray]
List contains X and Y columns from the FeatureTable. Returns
an empty array if nothing to plot.
x_axis_name : str
The title to display on the x axis. Returns
an empty string if nothing to plot.
"""
if not hasattr(self.layers[0], "features"):
# if the selected layer doesn't have a featuretable,
# skip draw
return [], ""
feature_table = self.layers[0].features
if (
(len(feature_table) == 0)
or (self.x_axis_key is None)
):
return [], ""
data = feature_table[self.x_axis_key]
x_axis_name = self.x_axis_key.replace("_", " ")
return data, x_axis_name
def _on_update_layers(self) -> None:
"""
This is called when the layer selection changes by
``self.update_layers()``.
"""
if hasattr(self, "_key_selection_widget"):
self._key_selection_widget.reset_choices()
# reset the axis keys
self._x_axis_key = None
def draw(self) -> None:
"""Clear the axes and histogram the currently selected layer/slice."""
data, x_axis_name = self._get_data()
if len(data) == 0:
return
_, _, _ = self.axes.hist(data, bins=50, edgecolor='white',
linewidth=0.3)
# # set ax labels
self.axes.set_xlabel(x_axis_name)
self.axes.set_ylabel('Counts [#]')