-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathhistogram.py
359 lines (292 loc) · 11.8 KB
/
histogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
from typing import Any, Optional, Union, cast
import napari
import numpy as np
import numpy.typing as npt
from matplotlib.container import BarContainer
from qtpy.QtWidgets import (
QAbstractSpinBox,
QComboBox,
QDoubleSpinBox,
QFormLayout,
QGroupBox,
QLabel,
QSpinBox,
QVBoxLayout,
QWidget,
)
from .base import SingleAxesWidget
from .features import FEATURES_LAYER_TYPES
from .util import Interval
__all__ = ["HistogramWidget", "FeaturesHistogramWidget"]
_COLORS = {"r": "tab:red", "g": "tab:green", "b": "tab:blue"}
class HistogramWidget(SingleAxesWidget):
"""
Display a histogram of the currently selected layer.
"""
n_layers_input = Interval(1, 1)
input_layer_types = (napari.layers.Image,)
def __init__(
self,
napari_viewer: napari.viewer.Viewer,
parent: Optional[QWidget] = None,
):
super().__init__(napari_viewer, parent=parent)
# Create widgets for setting bin parameters
bins_start = QDoubleSpinBox()
bins_start.setObjectName("bins start")
bins_start.setStepType(QAbstractSpinBox.AdaptiveDecimalStepType)
bins_start.setRange(-1e10, 1e10)
bins_start.setValue(0)
bins_start.setWrapping(False)
bins_start.setKeyboardTracking(False)
bins_start.setDecimals(2)
bins_stop = QDoubleSpinBox()
bins_stop.setObjectName("bins stop")
bins_stop.setStepType(QAbstractSpinBox.AdaptiveDecimalStepType)
bins_stop.setRange(-1e10, 1e10)
bins_stop.setValue(100)
bins_start.setWrapping(False)
bins_stop.setKeyboardTracking(False)
bins_stop.setDecimals(2)
bins_num = QSpinBox()
bins_num.setObjectName("bins num")
bins_num.setRange(1, 100_000)
bins_num.setValue(101)
bins_num.setWrapping(False)
bins_num.setKeyboardTracking(False)
# Set bins widget layout
bins_selection_layout = QFormLayout()
bins_selection_layout.addRow("start", bins_start)
bins_selection_layout.addRow("stop", bins_stop)
bins_selection_layout.addRow("num", bins_num)
# Group the widgets and add to main layout
bins_widget_group = QGroupBox("Bins")
bins_widget_group_layout = QVBoxLayout()
bins_widget_group_layout.addLayout(bins_selection_layout)
bins_widget_group.setLayout(bins_widget_group_layout)
self.layout().addWidget(bins_widget_group)
# Add callbacks
bins_start.valueChanged.connect(self._draw)
bins_stop.valueChanged.connect(self._draw)
bins_num.valueChanged.connect(self._draw)
self._update_layers(None)
self.viewer.events.theme.connect(self._on_napari_theme_changed)
def on_update_layers(self) -> None:
"""
Called when the selected layers are updated.
"""
super().on_update_layers()
for layer in self.viewer.layers:
layer.events.contrast_limits.connect(self._update_contrast_lims)
if not self.layers:
return
# Reset to bin start, stop and step
layer_data = self._get_layer_data(self.layers[0])
self.autoset_widget_bins(data=layer_data)
# Only allow integer bins for integer data
# And only allow values greater than 0 for unsigned integers
n_decimals = 0 if np.issubdtype(layer_data.dtype, np.integer) else 2
is_unsigned = layer_data.dtype.kind == "u"
minimum_value = 0 if is_unsigned else -1e10
bins_start = self.findChild(QDoubleSpinBox, name="bins start")
bins_stop = self.findChild(QDoubleSpinBox, name="bins stop")
bins_start.setDecimals(n_decimals)
bins_stop.setDecimals(n_decimals)
bins_start.setMinimum(minimum_value)
bins_stop.setMinimum(minimum_value)
def _update_contrast_lims(self) -> None:
for lim, line in zip(
self.layers[0].contrast_limits, self._contrast_lines
):
line.set_xdata(lim)
self.figure.canvas.draw()
def autoset_widget_bins(self, data: npt.NDArray[Any]) -> None:
"""Update widgets with bins determined from the image data"""
if data.dtype.kind in {"i", "u"}:
# Make sure integer data types have integer sized bins
# We can't use unsigned ints when calculating the step, otherwise
# the following warning is raised:
# 'RuntimeWarning: overflow encountered in scalar subtract'
step = abs(np.min(data).astype(int) - np.max(data).astype(int) // 100)
step = max(1, step)
bins = np.arange(np.min(data), np.max(data) + step, step)
else:
bins = np.linspace(np.min(data), np.max(data), 100)
self.bins_start = bins[0]
self.bins_stop = bins[-1]
self.bins_num = bins.size
@property
def bins_start(self) -> float:
"""Minimum bin edge"""
return self.findChild(QDoubleSpinBox, name="bins start").value()
@bins_start.setter
def bins_start(self, start: Union[int, float]) -> None:
"""Set the minimum bin edge"""
self.findChild(QDoubleSpinBox, name="bins start").setValue(start)
@property
def bins_stop(self) -> float:
"""Maximum bin edge"""
return self.findChild(QDoubleSpinBox, name="bins stop").value()
@bins_stop.setter
def bins_stop(self, stop: Union[int, float]) -> None:
"""Set the maximum bin edge"""
self.findChild(QDoubleSpinBox, name="bins stop").setValue(stop)
@property
def bins_num(self) -> int:
"""Number of bins to use"""
return self.findChild(QSpinBox, name="bins num").value()
@bins_num.setter
def bins_num(self, num: int) -> None:
"""Set the number of bins to use"""
self.findChild(QSpinBox, name="bins num").setValue(num)
def _get_layer_data(self, layer: napari.layers.Layer) -> npt.NDArray[Any]:
"""Get the data associated with a given layer"""
if layer.data.ndim - layer.rgb == 3:
# 3D data, can be single channel or RGB
data = layer.data[self.current_z]
self.axes.set_title(f"z={self.current_z}")
else:
data = layer.data
# Read data into memory if it's a dask array
data = np.asarray(data)
return data
def draw(self) -> None:
"""
Clear the axes and histogram the currently selected layer/slice.
"""
layer = self.layers[0]
data = self._get_layer_data(layer)
# Important to calculate bins after slicing 3D data, to avoid reading
# whole cube into memory.
if data.dtype.kind in {"i", "u"}:
# Make sure integer data types have integer sized bins
step = abs((self.bins_start - self.bins_stop) // self.bins_num)
step = max(1, step)
bins = np.arange(self.bins_start, self.bins_stop + step, step)
else:
bins = np.linspace(self.bins_start, self.bins_stop, self.bins_num)
if layer.rgb:
# Histogram RGB channels independently
for i, c in enumerate("rgb"):
self.axes.hist(
data[..., i].ravel(),
bins=bins.tolist(),
label=c,
histtype="step",
color=_COLORS[c],
)
else:
self.axes.hist(data.ravel(), bins=bins.tolist(), label=layer.name)
self._contrast_lines = [
self.axes.axvline(lim, color="white")
for lim in layer.contrast_limits
]
self.axes.legend()
class FeaturesHistogramWidget(SingleAxesWidget):
"""
Display a histogram of selected feature attached to selected layer.
"""
n_layers_input = Interval(1, 1)
# All layers that have a .features attributes
input_layer_types = FEATURES_LAYER_TYPES
def __init__(
self,
napari_viewer: napari.viewer.Viewer,
parent: Optional[QWidget] = None,
):
super().__init__(napari_viewer, parent=parent)
self.layout().addLayout(QVBoxLayout())
self._key_selection_widget = QComboBox()
self.layout().addWidget(QLabel("Key:"))
self.layout().addWidget(self._key_selection_widget)
self._key_selection_widget.currentTextChanged.connect(
self._set_axis_keys
)
self._update_layers(None)
@property
def x_axis_key(self) -> Optional[str]:
"""Key to access x axis data from the FeaturesTable"""
return self._x_axis_key
@x_axis_key.setter
def x_axis_key(self, key: Optional[str]) -> None:
self._x_axis_key = key
self._draw()
def _set_axis_keys(self, x_axis_key: str) -> None:
"""Set both axis keys and then redraw the plot"""
self._x_axis_key = x_axis_key
self._draw()
def _get_valid_axis_keys(self) -> list[str]:
"""
Get the valid axis keys from the layer FeatureTable.
Returns
-------
axis_keys : List[str]
The valid axis keys in the FeatureTable. If the table is empty
or there isn't a table, returns an empty list.
"""
if len(self.layers) == 0 or not (hasattr(self.layers[0], "features")):
return []
else:
return self.layers[0].features.keys()
def _get_data(self) -> tuple[Optional[npt.NDArray[Any]], str]:
"""Get the plot data.
Returns
-------
data : List[np.ndarray]
List contains X and Y columns from the FeatureTable. Returns
an empty array if nothing to plot.
x_axis_name : str
The title to display on the x axis. Returns
an empty string if nothing to plot.
"""
if not hasattr(self.layers[0], "features"):
# if the selected layer doesn't have a featuretable,
# skip draw
return None, ""
feature_table = self.layers[0].features
if (len(feature_table) == 0) or (self.x_axis_key is None):
return None, ""
data = feature_table[self.x_axis_key]
x_axis_name = self.x_axis_key.replace("_", " ")
return data, x_axis_name
def on_update_layers(self) -> None:
"""
Called when the layer selection changes by ``self.update_layers()``.
"""
# reset the axis keys
self._x_axis_key = None
# Clear combobox
self._key_selection_widget.clear()
self._key_selection_widget.addItems(self._get_valid_axis_keys())
def draw(self) -> None:
"""Clear the axes and histogram the currently selected layer/slice."""
# get the colormap from the layer depending on its type
if isinstance(self.layers[0], napari.layers.Points):
colormap = self.layers[0].face_colormap
self.layers[0].face_color = self.x_axis_key
elif isinstance(self.layers[0], napari.layers.Vectors):
colormap = self.layers[0].edge_colormap
self.layers[0].edge_color = self.x_axis_key
else:
colormap = None
# apply new colors to the layer
self.viewer.layers[self.layers[0].name].refresh_colors(True)
self.viewer.layers[self.layers[0].name].refresh()
# Draw the histogram
data, x_axis_name = self._get_data()
if data is None:
return
_, bins, patches = self.axes.hist(
data, bins=50, edgecolor="white", linewidth=0.3
)
patches = cast(BarContainer, patches)
# recolor the histogram plot
if colormap is not None:
self.bins_norm = (bins - bins.min()) / (bins.max() - bins.min())
colors = colormap.map(self.bins_norm)
# Set histogram style:
for idx, patch in enumerate(patches):
patch.set_facecolor(colors[idx])
# set ax labels
self.axes.set_xlabel(x_axis_name)
self.axes.set_ylabel("Counts [#]")