-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathDynoStats.cpp
329 lines (285 loc) · 11.3 KB
/
DynoStats.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//===- bolt/Core/DynoStats.cpp - Dynamic execution stats ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the DynoStats class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/DynoStats.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <string>
#undef DEBUG_TYPE
#define DEBUG_TYPE "bolt"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltCategory;
static cl::opt<uint32_t>
DynoStatsScale("dyno-stats-scale",
cl::desc("scale to be applied while reporting dyno stats"),
cl::Optional,
cl::init(1),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<uint32_t>
PrintDynoOpcodeStat("print-dyno-opcode-stats",
cl::desc("print per instruction opcode dyno stats and the function"
"names:BB offsets of the nth highest execution counts"),
cl::init(0),
cl::Hidden,
cl::cat(BoltCategory));
} // namespace opts
namespace llvm {
namespace bolt {
constexpr const char *DynoStats::Desc[];
bool DynoStats::operator<(const DynoStats &Other) const {
return std::lexicographical_compare(
&Stats[FIRST_DYNO_STAT], &Stats[LAST_DYNO_STAT],
&Other.Stats[FIRST_DYNO_STAT], &Other.Stats[LAST_DYNO_STAT]);
}
bool DynoStats::operator==(const DynoStats &Other) const {
return std::equal(&Stats[FIRST_DYNO_STAT], &Stats[LAST_DYNO_STAT],
&Other.Stats[FIRST_DYNO_STAT]);
}
bool DynoStats::lessThan(const DynoStats &Other,
ArrayRef<Category> Keys) const {
return std::lexicographical_compare(
Keys.begin(), Keys.end(), Keys.begin(), Keys.end(),
[this, &Other](const Category A, const Category) {
return Stats[A] < Other.Stats[A];
});
}
void DynoStats::print(raw_ostream &OS, const DynoStats *Other,
MCInstPrinter *Printer) const {
auto printStatWithDelta = [&](const std::string &Name, uint64_t Stat,
uint64_t OtherStat) {
OS << format("%'20lld : ", Stat * opts::DynoStatsScale) << Name;
if (Other) {
if (Stat != OtherStat) {
OtherStat = std::max(OtherStat, uint64_t(1)); // to prevent divide by 0
OS << format(" (%+.1f%%)", ((float)Stat - (float)OtherStat) * 100.0 /
(float)(OtherStat));
} else {
OS << " (=)";
}
}
OS << '\n';
};
for (auto Stat = DynoStats::FIRST_DYNO_STAT + 1;
Stat < DynoStats::LAST_DYNO_STAT; ++Stat) {
if (!PrintAArch64Stats && Stat == DynoStats::VENEER_CALLS_AARCH64)
continue;
printStatWithDelta(Desc[Stat], Stats[Stat], Other ? (*Other)[Stat] : 0);
}
if (opts::PrintDynoOpcodeStat && Printer) {
OS << "\nProgram-wide opcode histogram:\n";
OS << " Opcode, Execution Count, Max Exec Count, "
"Function Name:Offset ...\n";
std::vector<std::pair<uint64_t, unsigned>> SortedHistogram;
for (const OpcodeStatTy &Stat : OpcodeHistogram)
SortedHistogram.emplace_back(Stat.second.first, Stat.first);
// Sort using lexicographic ordering
llvm::sort(SortedHistogram);
// Dump in ascending order: Start with Opcode with Highest execution
// count.
for (auto &Stat : llvm::reverse(SortedHistogram)) {
OS << format("%20s,%'18lld", Printer->getOpcodeName(Stat.second).data(),
Stat.first * opts::DynoStatsScale);
auto It = OpcodeHistogram.find(Stat.second);
assert(It != OpcodeHistogram.end());
MaxOpcodeHistogramTy MaxMultiMap = It->second.second;
// Start with function name:BB offset with highest execution count.
for (auto &Max : llvm::reverse(MaxMultiMap)) {
OS << format(", %'18lld, ", Max.first * opts::DynoStatsScale)
<< Max.second.first.str() << ':' << Max.second.second;
}
OS << '\n';
}
}
}
void DynoStats::operator+=(const DynoStats &Other) {
for (auto Stat = DynoStats::FIRST_DYNO_STAT + 1;
Stat < DynoStats::LAST_DYNO_STAT; ++Stat) {
Stats[Stat] += Other[Stat];
}
for (const OpcodeStatTy &Stat : Other.OpcodeHistogram) {
auto I = OpcodeHistogram.find(Stat.first);
if (I == OpcodeHistogram.end()) {
OpcodeHistogram.emplace(Stat);
} else {
// Merge other histograms, log only the opts::PrintDynoOpcodeStat'th
// maximum counts.
I->second.first += Stat.second.first;
auto &MMap = I->second.second;
auto &OtherMMap = Stat.second.second;
auto Size = MMap.size();
assert(Size <= opts::PrintDynoOpcodeStat);
for (auto OtherMMapPair : llvm::reverse(OtherMMap)) {
if (Size++ >= opts::PrintDynoOpcodeStat) {
auto First = MMap.begin();
if (OtherMMapPair.first <= First->first)
break;
MMap.erase(First);
}
MMap.emplace(OtherMMapPair);
}
}
}
}
DynoStats getDynoStats(BinaryFunction &BF) {
auto &BC = BF.getBinaryContext();
DynoStats Stats(/*PrintAArch64Stats*/ BC.isAArch64());
// Return empty-stats about the function we don't completely understand.
if (!BF.isSimple() || !BF.hasValidProfile() || !BF.hasCanonicalCFG())
return Stats;
// Update enumeration of basic blocks for correct detection of branch'
// direction.
BF.getLayout().updateLayoutIndices();
for (BinaryBasicBlock *const BB : BF.getLayout().blocks()) {
// The basic block execution count equals to the sum of incoming branch
// frequencies. This may deviate from the sum of outgoing branches of the
// basic block especially since the block may contain a function that
// does not return or a function that throws an exception.
const uint64_t BBExecutionCount = BB->getKnownExecutionCount();
// Ignore empty blocks and blocks that were not executed.
if (BB->getNumNonPseudos() == 0 || BBExecutionCount == 0)
continue;
// Count AArch64 linker-inserted veneers
if (BF.isAArch64Veneer())
Stats[DynoStats::VENEER_CALLS_AARCH64] += BF.getKnownExecutionCount();
// Count various instruction types by iterating through all instructions.
// When -print-dyno-opcode-stats is on, count per each opcode and record
// maximum execution counts.
for (const MCInst &Instr : *BB) {
if (opts::PrintDynoOpcodeStat) {
unsigned Opcode = Instr.getOpcode();
auto I = Stats.OpcodeHistogram.find(Opcode);
if (I == Stats.OpcodeHistogram.end()) {
DynoStats::MaxOpcodeHistogramTy MMap;
MMap.emplace(BBExecutionCount,
std::make_pair(BF.getOneName(), BB->getOffset()));
Stats.OpcodeHistogram.emplace(Opcode,
std::make_pair(BBExecutionCount, MMap));
} else {
I->second.first += BBExecutionCount;
bool Insert = true;
if (I->second.second.size() == opts::PrintDynoOpcodeStat) {
auto First = I->second.second.begin();
if (First->first < BBExecutionCount)
I->second.second.erase(First);
else
Insert = false;
}
if (Insert) {
I->second.second.emplace(
BBExecutionCount,
std::make_pair(BF.getOneName(), BB->getOffset()));
}
}
}
if (BC.MIB->mayStore(Instr)) {
Stats[DynoStats::STORES] += BBExecutionCount;
}
if (BC.MIB->mayLoad(Instr)) {
Stats[DynoStats::LOADS] += BBExecutionCount;
}
if (!BC.MIB->isCall(Instr))
continue;
uint64_t CallFreq = BBExecutionCount;
if (BC.MIB->getConditionalTailCall(Instr)) {
CallFreq =
BC.MIB->getAnnotationWithDefault<uint64_t>(Instr, "CTCTakenCount");
}
Stats[DynoStats::FUNCTION_CALLS] += CallFreq;
if (BC.MIB->isIndirectCall(Instr)) {
Stats[DynoStats::INDIRECT_CALLS] += CallFreq;
} else if (const MCSymbol *CallSymbol = BC.MIB->getTargetSymbol(Instr)) {
const BinaryFunction *BF = BC.getFunctionForSymbol(CallSymbol);
if (BF && BF->isPLTFunction()) {
Stats[DynoStats::PLT_CALLS] += CallFreq;
// We don't process PLT functions and hence have to adjust relevant
// dynostats here for:
//
// jmp *GOT_ENTRY(%rip)
//
// NOTE: this is arch-specific.
Stats[DynoStats::FUNCTION_CALLS] += CallFreq;
Stats[DynoStats::INDIRECT_CALLS] += CallFreq;
Stats[DynoStats::LOADS] += CallFreq;
Stats[DynoStats::INSTRUCTIONS] += CallFreq;
}
}
}
Stats[DynoStats::INSTRUCTIONS] += BB->getNumNonPseudos() * BBExecutionCount;
// Jump tables.
const MCInst *LastInstr = BB->getLastNonPseudoInstr();
if (BC.MIB->getJumpTable(*LastInstr)) {
Stats[DynoStats::JUMP_TABLE_BRANCHES] += BBExecutionCount;
LLVM_DEBUG(
static uint64_t MostFrequentJT;
if (BBExecutionCount > MostFrequentJT) {
MostFrequentJT = BBExecutionCount;
dbgs() << "BOLT-INFO: most frequently executed jump table is in "
<< "function " << BF << " in basic block " << BB->getName()
<< " executed totally " << BBExecutionCount << " times.\n";
}
);
continue;
}
if (BC.MIB->isIndirectBranch(*LastInstr) && !BC.MIB->isCall(*LastInstr)) {
Stats[DynoStats::UNKNOWN_INDIRECT_BRANCHES] += BBExecutionCount;
continue;
}
// Update stats for branches.
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch))
continue;
if (!CondBranch && !UncondBranch)
continue;
// Simple unconditional branch.
if (!CondBranch) {
Stats[DynoStats::UNCOND_BRANCHES] += BBExecutionCount;
continue;
}
// CTCs: instruction annotations could be stripped, hence check the number
// of successors to identify conditional tail calls.
if (BB->succ_size() == 1) {
if (BB->branch_info_begin() != BB->branch_info_end())
Stats[DynoStats::UNCOND_BRANCHES] += BB->branch_info_begin()->Count;
continue;
}
// Conditional branch that could be followed by an unconditional branch.
uint64_t TakenCount = BB->getTakenBranchInfo().Count;
if (TakenCount == BinaryBasicBlock::COUNT_NO_PROFILE)
TakenCount = 0;
uint64_t NonTakenCount = BB->getFallthroughBranchInfo().Count;
if (NonTakenCount == BinaryBasicBlock::COUNT_NO_PROFILE)
NonTakenCount = 0;
if (BF.isForwardBranch(BB, BB->getConditionalSuccessor(true))) {
Stats[DynoStats::FORWARD_COND_BRANCHES] += BBExecutionCount;
Stats[DynoStats::FORWARD_COND_BRANCHES_TAKEN] += TakenCount;
} else {
Stats[DynoStats::BACKWARD_COND_BRANCHES] += BBExecutionCount;
Stats[DynoStats::BACKWARD_COND_BRANCHES_TAKEN] += TakenCount;
}
if (UncondBranch) {
Stats[DynoStats::UNCOND_BRANCHES] += NonTakenCount;
}
}
return Stats;
}
} // namespace bolt
} // namespace llvm