-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_general_data.py
591 lines (507 loc) · 20.7 KB
/
test_general_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import copy
import numpy as np
import pytest
import torch
from mmdet.core import GeneralData, InstanceData
def _equal(a, b):
if isinstance(a, (torch.Tensor, np.ndarray)):
return (a == b).all()
else:
return a == b
def test_general_data():
# test init
meta_info = dict(
img_size=[256, 256],
path='dadfaff',
scale_factor=np.array([1.5, 1.5]),
img_shape=torch.rand(4))
data = dict(
bboxes=torch.rand(4, 4),
labels=torch.rand(4),
masks=np.random.rand(4, 2, 2))
instance_data = GeneralData(meta_info=meta_info)
assert 'img_size' in instance_data
assert instance_data.img_size == [256, 256]
assert instance_data['img_size'] == [256, 256]
assert 'path' in instance_data
assert instance_data.path == 'dadfaff'
# test nice_repr
repr_instance_data = instance_data.new(data=data)
nice_repr = str(repr_instance_data)
for line in nice_repr.split('\n'):
if 'masks' in line:
assert 'shape' in line
assert '(4, 2, 2)' in line
if 'bboxes' in line:
assert 'shape' in line
assert 'torch.Size([4, 4])' in line
if 'path' in line:
assert 'dadfaff' in line
if 'scale_factor' in line:
assert '[1.5 1.5]' in line
instance_data = GeneralData(
meta_info=meta_info, data=dict(bboxes=torch.rand(5)))
assert 'bboxes' in instance_data
assert len(instance_data.bboxes) == 5
# data should be a dict
with pytest.raises(AssertionError):
GeneralData(data=1)
# test set data
instance_data = GeneralData()
instance_data.set_data(data)
assert 'bboxes' in instance_data
assert len(instance_data.bboxes) == 4
assert 'masks' in instance_data
assert len(instance_data.masks) == 4
# data should be a dict
with pytest.raises(AssertionError):
instance_data.set_data(data=1)
# test set_meta
instance_data = GeneralData()
instance_data.set_meta_info(meta_info)
assert 'img_size' in instance_data
assert instance_data.img_size == [256, 256]
assert instance_data['img_size'] == [256, 256]
assert 'path' in instance_data
assert instance_data.path == 'dadfaff'
# can skip same value when overwrite
instance_data.set_meta_info(meta_info)
# meta should be a dict
with pytest.raises(AssertionError):
instance_data.set_meta_info(meta_info='fjhka')
# attribute in `_meta_info_field` is immutable once initialized
instance_data.set_meta_info(meta_info)
# meta should be immutable
with pytest.raises(KeyError):
instance_data.set_meta_info(dict(img_size=[254, 251]))
with pytest.raises(KeyError):
duplicate_meta_info = copy.deepcopy(meta_info)
duplicate_meta_info['path'] = 'dada'
instance_data.set_meta_info(duplicate_meta_info)
with pytest.raises(KeyError):
duplicate_meta_info = copy.deepcopy(meta_info)
duplicate_meta_info['scale_factor'] = np.array([1.5, 1.6])
instance_data.set_meta_info(duplicate_meta_info)
# test new_instance_data
instance_data = GeneralData(meta_info)
new_instance_data = instance_data.new()
for k, v in instance_data.meta_info_items():
assert k in new_instance_data
_equal(v, new_instance_data[k])
instance_data = GeneralData(meta_info, data=data)
temp_meta = copy.deepcopy(meta_info)
temp_data = copy.deepcopy(data)
temp_data['time'] = '12212'
temp_meta['img_norm'] = np.random.random(3)
new_instance_data = instance_data.new(meta_info=temp_meta, data=temp_data)
for k, v in new_instance_data.meta_info_items():
if k in instance_data:
_equal(v, instance_data[k])
else:
assert _equal(v, temp_meta[k])
assert k == 'img_norm'
for k, v in new_instance_data.items():
if k in instance_data:
_equal(v, instance_data[k])
else:
assert k == 'time'
assert _equal(v, temp_data[k])
# test keys
instance_data = GeneralData(meta_info, data=dict(bboxes=10))
assert 'bboxes' in instance_data.keys()
instance_data.b = 10
assert 'b' in instance_data
# test meta keys
instance_data = GeneralData(meta_info, data=dict(bboxes=10))
assert 'path' in instance_data.meta_info_keys()
assert len(instance_data.meta_info_keys()) == len(meta_info)
instance_data.set_meta_info(dict(workdir='fafaf'))
assert 'workdir' in instance_data
assert len(instance_data.meta_info_keys()) == len(meta_info) + 1
# test values
instance_data = GeneralData(meta_info, data=dict(bboxes=10))
assert 10 in instance_data.values()
assert len(instance_data.values()) == 1
# test meta values
instance_data = GeneralData(meta_info, data=dict(bboxes=10))
# torch 1.3 eq() can not compare str and tensor
from mmdet import digit_version
if digit_version(torch.__version__) >= [1, 4]:
assert 'dadfaff' in instance_data.meta_info_values()
assert len(instance_data.meta_info_values()) == len(meta_info)
# test items
instance_data = GeneralData(data=data)
for k, v in instance_data.items():
assert k in data
assert _equal(v, data[k])
# test meta_info_items
instance_data = GeneralData(meta_info=meta_info)
for k, v in instance_data.meta_info_items():
assert k in meta_info
assert _equal(v, meta_info[k])
# test __setattr__
new_instance_data = GeneralData(data=data)
new_instance_data.mask = torch.rand(3, 4, 5)
new_instance_data.bboxes = torch.rand(2, 4)
assert 'mask' in new_instance_data
assert len(new_instance_data.mask) == 3
assert len(new_instance_data.bboxes) == 2
# test instance_data_field has been updated
assert 'mask' in new_instance_data._data_fields
assert 'bboxes' in new_instance_data._data_fields
for k in data:
assert k in new_instance_data._data_fields
# '_meta_info_field', '_data_fields' is immutable.
with pytest.raises(AttributeError):
new_instance_data._data_fields = None
with pytest.raises(AttributeError):
new_instance_data._meta_info_fields = None
with pytest.raises(AttributeError):
del new_instance_data._data_fields
with pytest.raises(AttributeError):
del new_instance_data._meta_info_fields
# key in _meta_info_field is immutable
new_instance_data.set_meta_info(meta_info)
with pytest.raises(KeyError):
del new_instance_data.img_size
with pytest.raises(KeyError):
del new_instance_data.scale_factor
for k in new_instance_data.meta_info_keys():
with pytest.raises(AttributeError):
new_instance_data[k] = None
# test __delattr__
# test key can be removed in instance_data_field
assert 'mask' in new_instance_data._data_fields
assert 'mask' in new_instance_data.keys()
assert 'mask' in new_instance_data
assert hasattr(new_instance_data, 'mask')
del new_instance_data.mask
assert 'mask' not in new_instance_data.keys()
assert 'mask' not in new_instance_data
assert 'mask' not in new_instance_data._data_fields
assert not hasattr(new_instance_data, 'mask')
# tset __delitem__
new_instance_data.mask = torch.rand(1, 2, 3)
assert 'mask' in new_instance_data._data_fields
assert 'mask' in new_instance_data
assert hasattr(new_instance_data, 'mask')
del new_instance_data['mask']
assert 'mask' not in new_instance_data
assert 'mask' not in new_instance_data._data_fields
assert 'mask' not in new_instance_data
assert not hasattr(new_instance_data, 'mask')
# test __setitem__
new_instance_data['mask'] = torch.rand(1, 2, 3)
assert 'mask' in new_instance_data._data_fields
assert 'mask' in new_instance_data.keys()
assert hasattr(new_instance_data, 'mask')
# test data_fields has been updated
assert 'mask' in new_instance_data.keys()
assert 'mask' in new_instance_data._data_fields
# '_meta_info_field', '_data_fields' is immutable.
with pytest.raises(AttributeError):
del new_instance_data['_data_fields']
with pytest.raises(AttributeError):
del new_instance_data['_meta_info_field']
# test __getitem__
new_instance_data.mask is new_instance_data['mask']
# test get
assert new_instance_data.get('mask') is new_instance_data.mask
assert new_instance_data.get('none_attribute', None) is None
assert new_instance_data.get('none_attribute', 1) == 1
# test pop
mask = new_instance_data.mask
assert new_instance_data.pop('mask') is mask
assert new_instance_data.pop('mask', None) is None
assert new_instance_data.pop('mask', 1) == 1
# '_meta_info_field', '_data_fields' is immutable.
with pytest.raises(KeyError):
new_instance_data.pop('_data_fields')
with pytest.raises(KeyError):
new_instance_data.pop('_meta_info_field')
# attribute in `_meta_info_field` is immutable
with pytest.raises(KeyError):
new_instance_data.pop('img_size')
# test pop attribute in instance_data_filed
new_instance_data['mask'] = torch.rand(1, 2, 3)
new_instance_data.pop('mask')
# test data_field has been updated
assert 'mask' not in new_instance_data
assert 'mask' not in new_instance_data._data_fields
assert 'mask' not in new_instance_data
# test_keys
new_instance_data.mask = torch.ones(1, 2, 3)
'mask' in new_instance_data.keys()
has_flag = False
for key in new_instance_data.keys():
if key == 'mask':
has_flag = True
assert has_flag
# test values
assert len(list(new_instance_data.keys())) == len(
list(new_instance_data.values()))
mask = new_instance_data.mask
has_flag = False
for value in new_instance_data.values():
if value is mask:
has_flag = True
assert has_flag
# test items
assert len(list(new_instance_data.keys())) == len(
list(new_instance_data.items()))
mask = new_instance_data.mask
has_flag = False
for key, value in new_instance_data.items():
if value is mask:
assert key == 'mask'
has_flag = True
assert has_flag
# test device
new_instance_data = GeneralData()
if torch.cuda.is_available():
newnew_instance_data = new_instance_data.new()
devices = ('cpu', 'cuda')
for i in range(10):
device = devices[i % 2]
newnew_instance_data[f'{i}'] = torch.rand(1, 2, 3, device=device)
newnew_instance_data = newnew_instance_data.cpu()
for value in newnew_instance_data.values():
assert not value.is_cuda
newnew_instance_data = new_instance_data.new()
devices = ('cuda', 'cpu')
for i in range(10):
device = devices[i % 2]
newnew_instance_data[f'{i}'] = torch.rand(1, 2, 3, device=device)
newnew_instance_data = newnew_instance_data.cuda()
for value in newnew_instance_data.values():
assert value.is_cuda
# test to
double_instance_data = instance_data.new()
double_instance_data.long = torch.LongTensor(1, 2, 3, 4)
double_instance_data.bool = torch.BoolTensor(1, 2, 3, 4)
double_instance_data = instance_data.to(torch.double)
for k, v in double_instance_data.items():
if isinstance(v, torch.Tensor):
assert v.dtype is torch.double
# test .cpu() .cuda()
if torch.cuda.is_available():
cpu_instance_data = double_instance_data.new()
cpu_instance_data.mask = torch.rand(1)
cuda_tensor = torch.rand(1, 2, 3).cuda()
cuda_instance_data = cpu_instance_data.to(cuda_tensor.device)
for value in cuda_instance_data.values():
assert value.is_cuda
cpu_instance_data = cuda_instance_data.cpu()
for value in cpu_instance_data.values():
assert not value.is_cuda
cuda_instance_data = cpu_instance_data.cuda()
for value in cuda_instance_data.values():
assert value.is_cuda
# test detach
grad_instance_data = double_instance_data.new()
grad_instance_data.mask = torch.rand(2, requires_grad=True)
grad_instance_data.mask_1 = torch.rand(2, requires_grad=True)
detach_instance_data = grad_instance_data.detach()
for value in detach_instance_data.values():
assert not value.requires_grad
# test numpy
tensor_instance_data = double_instance_data.new()
tensor_instance_data.mask = torch.rand(2, requires_grad=True)
tensor_instance_data.mask_1 = torch.rand(2, requires_grad=True)
numpy_instance_data = tensor_instance_data.numpy()
for value in numpy_instance_data.values():
assert isinstance(value, np.ndarray)
if torch.cuda.is_available():
tensor_instance_data = double_instance_data.new()
tensor_instance_data.mask = torch.rand(2)
tensor_instance_data.mask_1 = torch.rand(2)
tensor_instance_data = tensor_instance_data.cuda()
numpy_instance_data = tensor_instance_data.numpy()
for value in numpy_instance_data.values():
assert isinstance(value, np.ndarray)
instance_data['_c'] = 10000
instance_data.get('dad', None) is None
assert hasattr(instance_data, '_c')
del instance_data['_c']
assert not hasattr(instance_data, '_c')
instance_data.a = 1000
instance_data['a'] = 2000
assert instance_data['a'] == 2000
assert instance_data.a == 2000
assert instance_data.get('a') == instance_data['a'] == instance_data.a
instance_data._meta = 1000
assert '_meta' in instance_data.keys()
if torch.cuda.is_available():
instance_data.bbox = torch.ones(2, 3, 4, 5).cuda()
instance_data.score = torch.ones(2, 3, 4, 4)
else:
instance_data.bbox = torch.ones(2, 3, 4, 5)
assert len(instance_data.new().keys()) == 0
with pytest.raises(AttributeError):
instance_data.img_size = 100
for k, v in instance_data.items():
if k == 'bbox':
assert isinstance(v, torch.Tensor)
assert 'a' in instance_data
instance_data.pop('a')
assert 'a' not in instance_data
cpu_instance_data = instance_data.cpu()
for k, v in cpu_instance_data.items():
if isinstance(v, torch.Tensor):
assert not v.is_cuda
assert isinstance(cpu_instance_data.numpy().bbox, np.ndarray)
if torch.cuda.is_available():
cuda_resutls = instance_data.cuda()
for k, v in cuda_resutls.items():
if isinstance(v, torch.Tensor):
assert v.is_cuda
def test_instance_data():
meta_info = dict(
img_size=(256, 256),
path='dadfaff',
scale_factor=np.array([1.5, 1.5, 1, 1]))
data = dict(
bboxes=torch.rand(4, 4),
masks=torch.rand(4, 2, 2),
labels=np.random.rand(4),
size=[(i, i) for i in range(4)])
# test init
instance_data = InstanceData(meta_info)
assert 'path' in instance_data
instance_data = InstanceData(meta_info, data=data)
assert len(instance_data) == 4
instance_data.set_data(data)
assert len(instance_data) == 4
meta_info = copy.deepcopy(meta_info)
meta_info['img_name'] = 'flag'
# test newinstance_data
new_instance_data = instance_data.new(meta_info=meta_info)
for k, v in new_instance_data.meta_info_items():
if k in instance_data:
_equal(v, instance_data[k])
else:
assert _equal(v, meta_info[k])
assert k == 'img_name'
# meta info is immutable
with pytest.raises(KeyError):
meta_info = copy.deepcopy(meta_info)
meta_info['path'] = 'fdasfdsd'
instance_data.new(meta_info=meta_info)
# data fields should have same length
with pytest.raises(AssertionError):
temp_data = copy.deepcopy(data)
temp_data['bboxes'] = torch.rand(5, 4)
instance_data.new(data=temp_data)
temp_data = copy.deepcopy(data)
temp_data['scores'] = torch.rand(4)
new_instance_data = instance_data.new(data=temp_data)
for k, v in new_instance_data.items():
if k in instance_data:
_equal(v, instance_data[k])
else:
assert k == 'scores'
assert _equal(v, temp_data[k])
instance_data = instance_data.new()
# test __setattr__
# '_meta_info_field', '_data_fields' is immutable.
with pytest.raises(AttributeError):
instance_data._data_fields = dict()
with pytest.raises(AttributeError):
instance_data._data_fields = dict()
# all attribute in instance_data_field should be
# (torch.Tensor, np.ndarray, list))
with pytest.raises(AssertionError):
instance_data.a = 1000
# instance_data field should has same length
new_instance_data = instance_data.new()
new_instance_data.det_bbox = torch.rand(100, 4)
new_instance_data.det_label = torch.arange(100)
with pytest.raises(AssertionError):
new_instance_data.scores = torch.rand(101, 1)
new_instance_data.none = [None] * 100
with pytest.raises(AssertionError):
new_instance_data.scores = [None] * 101
new_instance_data.numpy_det = np.random.random([100, 1])
with pytest.raises(AssertionError):
new_instance_data.scores = np.random.random([101, 1])
# isinstance(str, slice, int, torch.LongTensor, torch.BoolTensor)
item = torch.Tensor([1, 2, 3, 4])
with pytest.raises(AssertionError):
new_instance_data[item]
len(new_instance_data[item.long()]) == 1
# when input is a bool tensor, The shape of
# the input at index 0 should equal to
# the value length in instance_data_field
with pytest.raises(AssertionError):
new_instance_data[item.bool()]
for i in range(len(new_instance_data)):
assert new_instance_data[i].det_label == i
assert len(new_instance_data[i]) == 1
# assert the index should in 0 ~ len(instance_data) -1
with pytest.raises(IndexError):
new_instance_data[101]
# assert the index should not be an empty tensor
new_new_instance_data = new_instance_data.new()
with pytest.raises(AssertionError):
new_new_instance_data[0]
# test str
with pytest.raises(AssertionError):
instance_data.img_size_dummmy = meta_info['img_size']
# test slice
ten_ressults = new_instance_data[:10]
len(ten_ressults) == 10
for v in ten_ressults.values():
assert len(v) == 10
# test Longtensor
long_tensor = torch.randint(100, (50, ))
long_index_instance_data = new_instance_data[long_tensor]
assert len(long_index_instance_data) == len(long_tensor)
for key, value in long_index_instance_data.items():
if not isinstance(value, list):
assert (long_index_instance_data[key] == new_instance_data[key]
[long_tensor]).all()
else:
len(long_tensor) == len(value)
# test bool tensor
bool_tensor = torch.rand(100) > 0.5
bool_index_instance_data = new_instance_data[bool_tensor]
assert len(bool_index_instance_data) == bool_tensor.sum()
for key, value in bool_index_instance_data.items():
if not isinstance(value, list):
assert (bool_index_instance_data[key] == new_instance_data[key]
[bool_tensor]).all()
else:
assert len(value) == bool_tensor.sum()
num_instance = 1000
instance_data_list = []
# assert len(instance_lists) > 0
with pytest.raises(AssertionError):
instance_data.cat(instance_data_list)
for _ in range(2):
instance_data['bbox'] = torch.rand(num_instance, 4)
instance_data['label'] = torch.rand(num_instance, 1)
instance_data['mask'] = torch.rand(num_instance, 224, 224)
instance_data['instances_infos'] = [1] * num_instance
instance_data['cpu_bbox'] = np.random.random((num_instance, 4))
if torch.cuda.is_available():
instance_data.cuda_tensor = torch.rand(num_instance).cuda()
assert instance_data.cuda_tensor.is_cuda
cuda_instance_data = instance_data.cuda()
assert cuda_instance_data.cuda_tensor.is_cuda
assert len(instance_data[0]) == 1
with pytest.raises(IndexError):
return instance_data[num_instance + 1]
with pytest.raises(AssertionError):
instance_data.centerness = torch.rand(num_instance + 1, 1)
mask_tensor = torch.rand(num_instance) > 0.5
length = mask_tensor.sum()
assert len(instance_data[mask_tensor]) == length
index_tensor = torch.LongTensor([1, 5, 8, 110, 399])
length = len(index_tensor)
assert len(instance_data[index_tensor]) == length
instance_data_list.append(instance_data)
cat_resutls = InstanceData.cat(instance_data_list)
assert len(cat_resutls) == num_instance * 2
instances = InstanceData(data=dict(bboxes=torch.rand(4, 4)))
# cat only single instance
assert len(InstanceData.cat([instances])) == 4