forked from scikit-learn/scikit-learn.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathv0.14.html
574 lines (540 loc) · 51.1 KB
/
v0.14.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Version 0.14 — scikit-learn 0.20.dev0 documentation</title>
<!-- htmltitle is before nature.css - we use this hack to load bootstrap first -->
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="stylesheet" href="../_static/css/bootstrap.min.css" media="screen" />
<link rel="stylesheet" href="../_static/css/bootstrap-responsive.css"/>
<link rel="stylesheet" href="../_static/nature.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/gallery.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../',
VERSION: '0.20.dev0',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="../_static/js/copybutton.js"></script>
<script type="text/javascript" src="../_static/js/extra.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_SVG"></script>
<link rel="shortcut icon" href="../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../about.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Version 0.13.1" href="v0.13.html" />
<link rel="prev" title="Version 0.15.2" href="v0.15.html" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<script src="../_static/js/bootstrap.min.js" type="text/javascript"></script>
<script>
VERSION_SUBDIR = (function(groups) {
return groups ? groups[1] : null;
})(location.href.match(/^https?:\/\/scikit-learn.org\/([^\/]+)/));
</script>
<link rel="canonical" href="http://scikit-learn.org/stable/whats_new/v0.14.html" />
<script type="text/javascript">
$("div.buttonNext, div.buttonPrevious").hover(
function () {
$(this).css('background-color', '#FF9C34');
},
function () {
$(this).css('background-color', '#A7D6E2');
}
);
function showMenu() {
var topNav = document.getElementById("scikit-navbar");
if (topNav.className === "navbar") {
topNav.className += " responsive";
} else {
topNav.className = "navbar";
}
};
</script>
</head>
<body>
<div class="header-wrapper">
<div class="header">
<p class="logo"><a href="../index.html">
<img src="../_static/scikit-learn-logo-small.png" alt="Logo"/>
</a>
</p><div class="navbar" id="scikit-navbar">
<ul>
<li><a href="../index.html">Home</a></li>
<li><a href="../install.html">Installation</a></li>
<li class="btn-li"><div class="btn-group">
<a href="../documentation.html">Documentation</a>
<a class="btn dropdown-toggle" data-toggle="dropdown">
<span class="caret"></span>
</a>
<ul class="dropdown-menu">
<li class="link-title">Scikit-learn <script>document.write(DOCUMENTATION_OPTIONS.VERSION + (VERSION_SUBDIR ? " (" + VERSION_SUBDIR + ")" : ""));</script></li>
<li><a href="../tutorial/index.html">Tutorials</a></li>
<li><a href="../user_guide.html">User guide</a></li>
<li><a href="../modules/classes.html">API</a></li>
<li><a href="../glossary.html">Glossary</a></li>
<li><a href="../faq.html">FAQ</a></li>
<li><a href="../developers/contributing.html">Contributing</a></li>
<li class="divider"></li>
<script>if (VERSION_SUBDIR != "stable") document.write('<li><a href="http://scikit-learn.org/stable/documentation.html">Stable version</a></li>')</script>
<script>if (VERSION_SUBDIR != "dev") document.write('<li><a href="http://scikit-learn.org/dev/documentation.html">Development version</a></li>')</script>
<li><a href="http://scikit-learn.org/dev/versions.html">All available versions</a></li>
<li><a href="../_downloads/scikit-learn-docs.pdf">PDF documentation</a></li>
</ul>
</div>
</li>
<li><a href="../auto_examples/index.html">Examples</a></li>
</ul>
<a href="javascript:void(0);" onclick="showMenu()">
<div class="nav-icon">
<div class="hamburger-line"></div>
<div class="hamburger-line"></div>
<div class="hamburger-line"></div>
</div>
</a>
<div class="search_form">
<div class="gcse-search" id="cse" style="width: 100%;"></div>
</div>
</div> <!-- end navbar --></div>
</div>
<!-- GitHub "fork me" ribbon -->
<a href="https://github.com/scikit-learn/scikit-learn">
<img class="fork-me"
style="position: absolute; top: 0; right: 0; border: 0;"
src="../_static/img/forkme.png"
alt="Fork me on GitHub" />
</a>
<div class="content-wrapper">
<div class="sphinxsidebar">
<div class="sphinxsidebarwrapper">
<div class="rel">
<div class="rellink">
<a href="v0.15.html"
accesskey="P">Previous
<br/>
<span class="smallrellink">
Version 0.15.2
</span>
<span class="hiddenrellink">
Version 0.15.2
</span>
</a>
</div>
<div class="spacer">
</div>
<div class="rellink">
<a href="v0.13.html"
accesskey="N">Next
<br/>
<span class="smallrellink">
Version 0.13.1
</span>
<span class="hiddenrellink">
Version 0.13.1
</span>
</a>
</div>
<!-- Ad a link to the 'up' page -->
<div class="spacer">
</div>
<div class="rellink">
<a href="../whats_new.html">
Up
<br/>
<span class="smallrellink">
Release History
</span>
<span class="hiddenrellink">
Release History
</span>
</a>
</div>
</div>
<p class="doc-version"><b>scikit-learn v0.20.dev0</b><br/>
<a href="http://scikit-learn.org/stable/support.html#documentation-resources">Other versions</a></p>
<p class="citing">Please <b><a href="../about.html#citing-scikit-learn" style="font-size: 110%;">cite us </a></b>if you use the software.</p>
<ul>
<li><a class="reference internal" href="#">Version 0.14</a><ul>
<li><a class="reference internal" href="#changelog">Changelog</a></li>
<li><a class="reference internal" href="#api-changes-summary">API changes summary</a></li>
<li><a class="reference internal" href="#people">People</a></li>
</ul>
</li>
</ul>
</div>
</div>
<input type="checkbox" id="nav-trigger" class="nav-trigger" checked />
<label for="nav-trigger"></label>
<div class="content">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="version-0-14">
<span id="changes-0-14"></span><h1>Version 0.14<a class="headerlink" href="#version-0-14" title="Permalink to this headline">¶</a></h1>
<p><strong>August 7, 2013</strong></p>
<div class="section" id="changelog">
<h2>Changelog<a class="headerlink" href="#changelog" title="Permalink to this headline">¶</a></h2>
<ul class="simple">
<li>Missing values with sparse and dense matrices can be imputed with the
transformer <a class="reference internal" href="../modules/generated/sklearn.preprocessing.Imputer.html#sklearn.preprocessing.Imputer" title="sklearn.preprocessing.Imputer"><code class="xref py py-class docutils literal"><span class="pre">preprocessing.Imputer</span></code></a> by <a class="reference external" href="http://nicolastr.com/">Nicolas Trésegnie</a>.</li>
<li>The core implementation of decisions trees has been rewritten from
scratch, allowing for faster tree induction and lower memory
consumption in all tree-based estimators. By <a class="reference external" href="http://www.montefiore.ulg.ac.be/~glouppe/">Gilles Louppe</a>.</li>
<li>Added <a class="reference internal" href="../modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier" title="sklearn.ensemble.AdaBoostClassifier"><code class="xref py py-class docutils literal"><span class="pre">ensemble.AdaBoostClassifier</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.ensemble.AdaBoostRegressor.html#sklearn.ensemble.AdaBoostRegressor" title="sklearn.ensemble.AdaBoostRegressor"><code class="xref py py-class docutils literal"><span class="pre">ensemble.AdaBoostRegressor</span></code></a>, by <a class="reference external" href="https://github.com/ndawe">Noel Dawe</a> and
<a class="reference external" href="http://www.montefiore.ulg.ac.be/~glouppe/">Gilles Louppe</a>. See the <a class="reference internal" href="../modules/ensemble.html#adaboost"><span class="std std-ref">AdaBoost</span></a> section of the user
guide for details and examples.</li>
<li>Added <a class="reference internal" href="../modules/generated/sklearn.grid_search.RandomizedSearchCV.html#sklearn.grid_search.RandomizedSearchCV" title="sklearn.grid_search.RandomizedSearchCV"><code class="xref py py-class docutils literal"><span class="pre">grid_search.RandomizedSearchCV</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.grid_search.ParameterSampler.html#sklearn.grid_search.ParameterSampler" title="sklearn.grid_search.ParameterSampler"><code class="xref py py-class docutils literal"><span class="pre">grid_search.ParameterSampler</span></code></a> for randomized hyperparameter
optimization. By <a class="reference external" href="http://peekaboo-vision.blogspot.com">Andreas Müller</a>.</li>
<li>Added <a class="reference internal" href="../modules/biclustering.html#biclustering"><span class="std std-ref">biclustering</span></a> algorithms
(<a class="reference internal" href="../modules/generated/sklearn.cluster.bicluster.SpectralCoclustering.html#sklearn.cluster.bicluster.SpectralCoclustering" title="sklearn.cluster.bicluster.SpectralCoclustering"><code class="xref py py-class docutils literal"><span class="pre">sklearn.cluster.bicluster.SpectralCoclustering</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.cluster.bicluster.SpectralBiclustering.html#sklearn.cluster.bicluster.SpectralBiclustering" title="sklearn.cluster.bicluster.SpectralBiclustering"><code class="xref py py-class docutils literal"><span class="pre">sklearn.cluster.bicluster.SpectralBiclustering</span></code></a>), data
generation methods (<a class="reference internal" href="../modules/generated/sklearn.datasets.make_biclusters.html#sklearn.datasets.make_biclusters" title="sklearn.datasets.make_biclusters"><code class="xref py py-func docutils literal"><span class="pre">sklearn.datasets.make_biclusters</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.datasets.make_checkerboard.html#sklearn.datasets.make_checkerboard" title="sklearn.datasets.make_checkerboard"><code class="xref py py-func docutils literal"><span class="pre">sklearn.datasets.make_checkerboard</span></code></a>), and scoring metrics
(<a class="reference internal" href="../modules/generated/sklearn.metrics.consensus_score.html#sklearn.metrics.consensus_score" title="sklearn.metrics.consensus_score"><code class="xref py py-func docutils literal"><span class="pre">sklearn.metrics.consensus_score</span></code></a>). By <a class="reference external" href="http://www.kemaleren.com">Kemal Eren</a>.</li>
<li>Added <a class="reference internal" href="../modules/neural_networks_unsupervised.html#rbm"><span class="std std-ref">Restricted Boltzmann Machines</span></a>
(<a class="reference internal" href="../modules/generated/sklearn.neural_network.BernoulliRBM.html#sklearn.neural_network.BernoulliRBM" title="sklearn.neural_network.BernoulliRBM"><code class="xref py py-class docutils literal"><span class="pre">neural_network.BernoulliRBM</span></code></a>). By <a class="reference external" href="http://ynd.github.io/">Yann Dauphin</a>.</li>
<li>Python 3 support by <a class="reference external" href="https://github.com/justinvf">Justin Vincent</a>, <a class="reference external" href="https://github.com/larsmans">Lars Buitinck</a>,
<a class="reference external" href="https://github.com/smoitra87">Subhodeep Moitra</a> and <a class="reference external" href="https://twitter.com/ogrisel">Olivier Grisel</a>. All tests now pass under
Python 3.3.</li>
<li>Ability to pass one penalty (alpha value) per target in
<a class="reference internal" href="../modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge" title="sklearn.linear_model.Ridge"><code class="xref py py-class docutils literal"><span class="pre">linear_model.Ridge</span></code></a>, by @eickenberg and <a class="reference external" href="http://www.mblondel.org">Mathieu Blondel</a>.</li>
<li>Fixed <code class="xref py py-mod docutils literal"><span class="pre">sklearn.linear_model.stochastic_gradient.py</span></code> L2 regularization
issue (minor practical significance).
By <a class="reference external" href="https://github.com/norbert">Norbert Crombach</a> and <a class="reference external" href="http://www.mblondel.org">Mathieu Blondel</a> .</li>
<li>Added an interactive version of <a class="reference external" href="http://peekaboo-vision.blogspot.com">Andreas Müller</a>’s
<a class="reference external" href="http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html">Machine Learning Cheat Sheet (for scikit-learn)</a>
to the documentation. See <a class="reference internal" href="../tutorial/machine_learning_map/index.html#ml-map"><span class="std std-ref">Choosing the right estimator</span></a>.
By <a class="reference external" href="https://github.com/jaquesgrobler">Jaques Grobler</a>.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.grid_search.GridSearchCV.html#sklearn.grid_search.GridSearchCV" title="sklearn.grid_search.GridSearchCV"><code class="xref py py-class docutils literal"><span class="pre">grid_search.GridSearchCV</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.cross_validation.cross_val_score.html#sklearn.cross_validation.cross_val_score" title="sklearn.cross_validation.cross_val_score"><code class="xref py py-func docutils literal"><span class="pre">cross_validation.cross_val_score</span></code></a> now support the use of advanced
scoring function such as area under the ROC curve and f-beta scores.
See <a class="reference internal" href="../modules/model_evaluation.html#scoring-parameter"><span class="std std-ref">The scoring parameter: defining model evaluation rules</span></a> for details. By <a class="reference external" href="http://peekaboo-vision.blogspot.com">Andreas Müller</a>
and <a class="reference external" href="https://github.com/larsmans">Lars Buitinck</a>.
Passing a function from <a class="reference internal" href="../modules/classes.html#module-sklearn.metrics" title="sklearn.metrics"><code class="xref py py-mod docutils literal"><span class="pre">sklearn.metrics</span></code></a> as <code class="docutils literal"><span class="pre">score_func</span></code> is
deprecated.</li>
<li>Multi-label classification output is now supported by
<a class="reference internal" href="../modules/generated/sklearn.metrics.accuracy_score.html#sklearn.metrics.accuracy_score" title="sklearn.metrics.accuracy_score"><code class="xref py py-func docutils literal"><span class="pre">metrics.accuracy_score</span></code></a>, <a class="reference internal" href="../modules/generated/sklearn.metrics.zero_one_loss.html#sklearn.metrics.zero_one_loss" title="sklearn.metrics.zero_one_loss"><code class="xref py py-func docutils literal"><span class="pre">metrics.zero_one_loss</span></code></a>,
<a class="reference internal" href="../modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score" title="sklearn.metrics.f1_score"><code class="xref py py-func docutils literal"><span class="pre">metrics.f1_score</span></code></a>, <a class="reference internal" href="../modules/generated/sklearn.metrics.fbeta_score.html#sklearn.metrics.fbeta_score" title="sklearn.metrics.fbeta_score"><code class="xref py py-func docutils literal"><span class="pre">metrics.fbeta_score</span></code></a>,
<a class="reference internal" href="../modules/generated/sklearn.metrics.classification_report.html#sklearn.metrics.classification_report" title="sklearn.metrics.classification_report"><code class="xref py py-func docutils literal"><span class="pre">metrics.classification_report</span></code></a>,
<a class="reference internal" href="../modules/generated/sklearn.metrics.precision_score.html#sklearn.metrics.precision_score" title="sklearn.metrics.precision_score"><code class="xref py py-func docutils literal"><span class="pre">metrics.precision_score</span></code></a> and <a class="reference internal" href="../modules/generated/sklearn.metrics.recall_score.html#sklearn.metrics.recall_score" title="sklearn.metrics.recall_score"><code class="xref py py-func docutils literal"><span class="pre">metrics.recall_score</span></code></a>
by <a class="reference external" href="http://www.ajoly.org">Arnaud Joly</a>.</li>
<li>Two new metrics <a class="reference internal" href="../modules/generated/sklearn.metrics.hamming_loss.html#sklearn.metrics.hamming_loss" title="sklearn.metrics.hamming_loss"><code class="xref py py-func docutils literal"><span class="pre">metrics.hamming_loss</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.metrics.jaccard_similarity_score.html#sklearn.metrics.jaccard_similarity_score" title="sklearn.metrics.jaccard_similarity_score"><code class="xref py py-func docutils literal"><span class="pre">metrics.jaccard_similarity_score</span></code></a>
are added with multi-label support by <a class="reference external" href="http://www.ajoly.org">Arnaud Joly</a>.</li>
<li>Speed and memory usage improvements in
<a class="reference internal" href="../modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer" title="sklearn.feature_extraction.text.CountVectorizer"><code class="xref py py-class docutils literal"><span class="pre">feature_extraction.text.CountVectorizer</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer" title="sklearn.feature_extraction.text.TfidfVectorizer"><code class="xref py py-class docutils literal"><span class="pre">feature_extraction.text.TfidfVectorizer</span></code></a>,
by Jochen Wersdörfer and Roman Sinayev.</li>
<li>The <code class="docutils literal"><span class="pre">min_df</span></code> parameter in
<a class="reference internal" href="../modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer" title="sklearn.feature_extraction.text.CountVectorizer"><code class="xref py py-class docutils literal"><span class="pre">feature_extraction.text.CountVectorizer</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer" title="sklearn.feature_extraction.text.TfidfVectorizer"><code class="xref py py-class docutils literal"><span class="pre">feature_extraction.text.TfidfVectorizer</span></code></a>, which used to be 2,
has been reset to 1 to avoid unpleasant surprises (empty vocabularies)
for novice users who try it out on tiny document collections.
A value of at least 2 is still recommended for practical use.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC" title="sklearn.svm.LinearSVC"><code class="xref py py-class docutils literal"><span class="pre">svm.LinearSVC</span></code></a>, <a class="reference internal" href="../modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier" title="sklearn.linear_model.SGDClassifier"><code class="xref py py-class docutils literal"><span class="pre">linear_model.SGDClassifier</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor" title="sklearn.linear_model.SGDRegressor"><code class="xref py py-class docutils literal"><span class="pre">linear_model.SGDRegressor</span></code></a> now have a <code class="docutils literal"><span class="pre">sparsify</span></code> method that
converts their <code class="docutils literal"><span class="pre">coef_</span></code> into a sparse matrix, meaning stored models
trained using these estimators can be made much more compact.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier" title="sklearn.linear_model.SGDClassifier"><code class="xref py py-class docutils literal"><span class="pre">linear_model.SGDClassifier</span></code></a> now produces multiclass probability
estimates when trained under log loss or modified Huber loss.</li>
<li>Hyperlinks to documentation in example code on the website by
<a class="reference external" href="https://github.com/mluessi">Martin Luessi</a>.</li>
<li>Fixed bug in <a class="reference internal" href="../modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxScaler" title="sklearn.preprocessing.MinMaxScaler"><code class="xref py py-class docutils literal"><span class="pre">preprocessing.MinMaxScaler</span></code></a> causing incorrect scaling
of the features for non-default <code class="docutils literal"><span class="pre">feature_range</span></code> settings. By <a class="reference external" href="http://peekaboo-vision.blogspot.com">Andreas
Müller</a>.</li>
<li><code class="docutils literal"><span class="pre">max_features</span></code> in <a class="reference internal" href="../modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier" title="sklearn.tree.DecisionTreeClassifier"><code class="xref py py-class docutils literal"><span class="pre">tree.DecisionTreeClassifier</span></code></a>,
<a class="reference internal" href="../modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor" title="sklearn.tree.DecisionTreeRegressor"><code class="xref py py-class docutils literal"><span class="pre">tree.DecisionTreeRegressor</span></code></a> and all derived ensemble estimators
now supports percentage values. By <a class="reference external" href="http://www.montefiore.ulg.ac.be/~glouppe/">Gilles Louppe</a>.</li>
<li>Performance improvements in <a class="reference internal" href="../modules/generated/sklearn.isotonic.IsotonicRegression.html#sklearn.isotonic.IsotonicRegression" title="sklearn.isotonic.IsotonicRegression"><code class="xref py py-class docutils literal"><span class="pre">isotonic.IsotonicRegression</span></code></a> by
<a class="reference external" href="https://github.com/nellev">Nelle Varoquaux</a>.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.metrics.accuracy_score.html#sklearn.metrics.accuracy_score" title="sklearn.metrics.accuracy_score"><code class="xref py py-func docutils literal"><span class="pre">metrics.accuracy_score</span></code></a> has an option normalize to return
the fraction or the number of correctly classified sample
by <a class="reference external" href="http://www.ajoly.org">Arnaud Joly</a>.</li>
<li>Added <a class="reference internal" href="../modules/generated/sklearn.metrics.log_loss.html#sklearn.metrics.log_loss" title="sklearn.metrics.log_loss"><code class="xref py py-func docutils literal"><span class="pre">metrics.log_loss</span></code></a> that computes log loss, aka cross-entropy
loss. By Jochen Wersdörfer and <a class="reference external" href="https://github.com/larsmans">Lars Buitinck</a>.</li>
<li>A bug that caused <a class="reference internal" href="../modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier" title="sklearn.ensemble.AdaBoostClassifier"><code class="xref py py-class docutils literal"><span class="pre">ensemble.AdaBoostClassifier</span></code></a>’s to output
incorrect probabilities has been fixed.</li>
<li>Feature selectors now share a mixin providing consistent <code class="docutils literal"><span class="pre">transform</span></code>,
<code class="docutils literal"><span class="pre">inverse_transform</span></code> and <code class="docutils literal"><span class="pre">get_support</span></code> methods. By <a class="reference external" href="http://joelnothman.com">Joel Nothman</a>.</li>
<li>A fitted <a class="reference internal" href="../modules/generated/sklearn.grid_search.GridSearchCV.html#sklearn.grid_search.GridSearchCV" title="sklearn.grid_search.GridSearchCV"><code class="xref py py-class docutils literal"><span class="pre">grid_search.GridSearchCV</span></code></a> or
<a class="reference internal" href="../modules/generated/sklearn.grid_search.RandomizedSearchCV.html#sklearn.grid_search.RandomizedSearchCV" title="sklearn.grid_search.RandomizedSearchCV"><code class="xref py py-class docutils literal"><span class="pre">grid_search.RandomizedSearchCV</span></code></a> can now generally be pickled.
By <a class="reference external" href="http://joelnothman.com">Joel Nothman</a>.</li>
<li>Refactored and vectorized implementation of <a class="reference internal" href="../modules/generated/sklearn.metrics.roc_curve.html#sklearn.metrics.roc_curve" title="sklearn.metrics.roc_curve"><code class="xref py py-func docutils literal"><span class="pre">metrics.roc_curve</span></code></a>
and <a class="reference internal" href="../modules/generated/sklearn.metrics.precision_recall_curve.html#sklearn.metrics.precision_recall_curve" title="sklearn.metrics.precision_recall_curve"><code class="xref py py-func docutils literal"><span class="pre">metrics.precision_recall_curve</span></code></a>. By <a class="reference external" href="http://joelnothman.com">Joel Nothman</a>.</li>
<li>The new estimator <a class="reference internal" href="../modules/generated/sklearn.decomposition.TruncatedSVD.html#sklearn.decomposition.TruncatedSVD" title="sklearn.decomposition.TruncatedSVD"><code class="xref py py-class docutils literal"><span class="pre">sklearn.decomposition.TruncatedSVD</span></code></a>
performs dimensionality reduction using SVD on sparse matrices,
and can be used for latent semantic analysis (LSA).
By <a class="reference external" href="https://github.com/larsmans">Lars Buitinck</a>.</li>
<li>Added self-contained example of out-of-core learning on text data
<a class="reference internal" href="../auto_examples/applications/plot_out_of_core_classification.html#sphx-glr-auto-examples-applications-plot-out-of-core-classification-py"><span class="std std-ref">Out-of-core classification of text documents</span></a>.
By <a class="reference external" href="https://github.com/oddskool">Eustache Diemert</a>.</li>
<li>The default number of components for
<a class="reference internal" href="../modules/generated/sklearn.decomposition.RandomizedPCA.html#sklearn.decomposition.RandomizedPCA" title="sklearn.decomposition.RandomizedPCA"><code class="xref py py-class docutils literal"><span class="pre">sklearn.decomposition.RandomizedPCA</span></code></a> is now correctly documented
to be <code class="docutils literal"><span class="pre">n_features</span></code>. This was the default behavior, so programs using it
will continue to work as they did.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans" title="sklearn.cluster.KMeans"><code class="xref py py-class docutils literal"><span class="pre">sklearn.cluster.KMeans</span></code></a> now fits several orders of magnitude
faster on sparse data (the speedup depends on the sparsity). By
<a class="reference external" href="https://github.com/larsmans">Lars Buitinck</a>.</li>
<li>Reduce memory footprint of FastICA by <a class="reference external" href="http://denis-engemann.de">Denis Engemann</a> and
<a class="reference external" href="http://alexandre.gramfort.net">Alexandre Gramfort</a>.</li>
<li>Verbose output in <code class="xref py py-mod docutils literal"><span class="pre">sklearn.ensemble.gradient_boosting</span></code> now uses
a column format and prints progress in decreasing frequency.
It also shows the remaining time. By <a class="reference external" href="https://sites.google.com/site/peterprettenhofer/">Peter Prettenhofer</a>.</li>
<li><code class="xref py py-mod docutils literal"><span class="pre">sklearn.ensemble.gradient_boosting</span></code> provides out-of-bag improvement
<code class="xref py py-attr docutils literal"><span class="pre">oob_improvement_</span></code>
rather than the OOB score for model selection. An example that shows
how to use OOB estimates to select the number of trees was added.
By <a class="reference external" href="https://sites.google.com/site/peterprettenhofer/">Peter Prettenhofer</a>.</li>
<li>Most metrics now support string labels for multiclass classification
by <a class="reference external" href="http://www.ajoly.org">Arnaud Joly</a> and <a class="reference external" href="https://github.com/larsmans">Lars Buitinck</a>.</li>
<li>New OrthogonalMatchingPursuitCV class by <a class="reference external" href="http://alexandre.gramfort.net">Alexandre Gramfort</a>
and <a class="reference external" href="http://vene.ro">Vlad Niculae</a>.</li>
<li>Fixed a bug in <a class="reference internal" href="../modules/generated/sklearn.covariance.GraphLassoCV.html#sklearn.covariance.GraphLassoCV" title="sklearn.covariance.GraphLassoCV"><code class="xref py py-class docutils literal"><span class="pre">sklearn.covariance.GraphLassoCV</span></code></a>: the
‘alphas’ parameter now works as expected when given a list of
values. By Philippe Gervais.</li>
<li>Fixed an important bug in <a class="reference internal" href="../modules/generated/sklearn.covariance.GraphLassoCV.html#sklearn.covariance.GraphLassoCV" title="sklearn.covariance.GraphLassoCV"><code class="xref py py-class docutils literal"><span class="pre">sklearn.covariance.GraphLassoCV</span></code></a>
that prevented all folds provided by a CV object to be used (only
the first 3 were used). When providing a CV object, execution
time may thus increase significantly compared to the previous
version (bug results are correct now). By Philippe Gervais.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.cross_validation.cross_val_score.html#sklearn.cross_validation.cross_val_score" title="sklearn.cross_validation.cross_val_score"><code class="xref py py-class docutils literal"><span class="pre">cross_validation.cross_val_score</span></code></a> and the <code class="xref py py-mod docutils literal"><span class="pre">grid_search</span></code>
module is now tested with multi-output data by <a class="reference external" href="http://www.ajoly.org">Arnaud Joly</a>.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.datasets.make_multilabel_classification.html#sklearn.datasets.make_multilabel_classification" title="sklearn.datasets.make_multilabel_classification"><code class="xref py py-func docutils literal"><span class="pre">datasets.make_multilabel_classification</span></code></a> can now return
the output in label indicator multilabel format by <a class="reference external" href="http://www.ajoly.org">Arnaud Joly</a>.</li>
<li>K-nearest neighbors, <a class="reference internal" href="../modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor" title="sklearn.neighbors.KNeighborsRegressor"><code class="xref py py-class docutils literal"><span class="pre">neighbors.KNeighborsRegressor</span></code></a>
and <a class="reference internal" href="../modules/generated/sklearn.neighbors.RadiusNeighborsRegressor.html#sklearn.neighbors.RadiusNeighborsRegressor" title="sklearn.neighbors.RadiusNeighborsRegressor"><code class="xref py py-class docutils literal"><span class="pre">neighbors.RadiusNeighborsRegressor</span></code></a>,
and radius neighbors, <a class="reference internal" href="../modules/generated/sklearn.neighbors.RadiusNeighborsRegressor.html#sklearn.neighbors.RadiusNeighborsRegressor" title="sklearn.neighbors.RadiusNeighborsRegressor"><code class="xref py py-class docutils literal"><span class="pre">neighbors.RadiusNeighborsRegressor</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.html#sklearn.neighbors.RadiusNeighborsClassifier" title="sklearn.neighbors.RadiusNeighborsClassifier"><code class="xref py py-class docutils literal"><span class="pre">neighbors.RadiusNeighborsClassifier</span></code></a> support multioutput data
by <a class="reference external" href="http://www.ajoly.org">Arnaud Joly</a>.</li>
<li>Random state in LibSVM-based estimators (<a class="reference internal" href="../modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC" title="sklearn.svm.SVC"><code class="xref py py-class docutils literal"><span class="pre">svm.SVC</span></code></a>, <code class="xref py py-class docutils literal"><span class="pre">NuSVC</span></code>,
<code class="xref py py-class docutils literal"><span class="pre">OneClassSVM</span></code>, <a class="reference internal" href="../modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR" title="sklearn.svm.SVR"><code class="xref py py-class docutils literal"><span class="pre">svm.SVR</span></code></a>, <a class="reference internal" href="../modules/generated/sklearn.svm.NuSVR.html#sklearn.svm.NuSVR" title="sklearn.svm.NuSVR"><code class="xref py py-class docutils literal"><span class="pre">svm.NuSVR</span></code></a>) can now be
controlled. This is useful to ensure consistency in the probability
estimates for the classifiers trained with <code class="docutils literal"><span class="pre">probability=True</span></code>. By
<a class="reference external" href="http://vene.ro">Vlad Niculae</a>.</li>
<li>Out-of-core learning support for discrete naive Bayes classifiers
<a class="reference internal" href="../modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB" title="sklearn.naive_bayes.MultinomialNB"><code class="xref py py-class docutils literal"><span class="pre">sklearn.naive_bayes.MultinomialNB</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB" title="sklearn.naive_bayes.BernoulliNB"><code class="xref py py-class docutils literal"><span class="pre">sklearn.naive_bayes.BernoulliNB</span></code></a> by adding the <code class="docutils literal"><span class="pre">partial_fit</span></code>
method by <a class="reference external" href="https://twitter.com/ogrisel">Olivier Grisel</a>.</li>
<li>New website design and navigation by <a class="reference external" href="http://www.montefiore.ulg.ac.be/~glouppe/">Gilles Louppe</a>, <a class="reference external" href="https://github.com/nellev">Nelle Varoquaux</a>,
Vincent Michel and <a class="reference external" href="http://peekaboo-vision.blogspot.com">Andreas Müller</a>.</li>
<li>Improved documentation on <a class="reference internal" href="../modules/multiclass.html#multiclass"><span class="std std-ref">multi-class, multi-label and multi-output
classification</span></a> by <a class="reference external" href="https://team.inria.fr/parietal/schwarty/">Yannick Schwartz</a> and <a class="reference external" href="http://www.ajoly.org">Arnaud Joly</a>.</li>
<li>Better input and error handling in the <code class="xref py py-mod docutils literal"><span class="pre">metrics</span></code> module by
<a class="reference external" href="http://www.ajoly.org">Arnaud Joly</a> and <a class="reference external" href="http://joelnothman.com">Joel Nothman</a>.</li>
<li>Speed optimization of the <code class="xref py py-mod docutils literal"><span class="pre">hmm</span></code> module by <a class="reference external" href="https://github.com/kmike">Mikhail Korobov</a></li>
<li>Significant speed improvements for <a class="reference internal" href="../modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN" title="sklearn.cluster.DBSCAN"><code class="xref py py-class docutils literal"><span class="pre">sklearn.cluster.DBSCAN</span></code></a>
by <a class="reference external" href="https://github.com/cleverless">cleverless</a></li>
</ul>
</div>
<div class="section" id="api-changes-summary">
<h2>API changes summary<a class="headerlink" href="#api-changes-summary" title="Permalink to this headline">¶</a></h2>
<ul class="simple">
<li>The <code class="xref py py-func docutils literal"><span class="pre">auc_score</span></code> was renamed <code class="xref py py-func docutils literal"><span class="pre">roc_auc_score</span></code>.</li>
<li>Testing scikit-learn with <code class="docutils literal"><span class="pre">sklearn.test()</span></code> is deprecated. Use
<code class="docutils literal"><span class="pre">nosetests</span> <span class="pre">sklearn</span></code> from the command line.</li>
<li>Feature importances in <a class="reference internal" href="../modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier" title="sklearn.tree.DecisionTreeClassifier"><code class="xref py py-class docutils literal"><span class="pre">tree.DecisionTreeClassifier</span></code></a>,
<a class="reference internal" href="../modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor" title="sklearn.tree.DecisionTreeRegressor"><code class="xref py py-class docutils literal"><span class="pre">tree.DecisionTreeRegressor</span></code></a> and all derived ensemble estimators
are now computed on the fly when accessing the <code class="docutils literal"><span class="pre">feature_importances_</span></code>
attribute. Setting <code class="docutils literal"><span class="pre">compute_importances=True</span></code> is no longer required.
By <a class="reference external" href="http://www.montefiore.ulg.ac.be/~glouppe/">Gilles Louppe</a>.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.linear_model.lasso_path.html#sklearn.linear_model.lasso_path" title="sklearn.linear_model.lasso_path"><code class="xref py py-class docutils literal"><span class="pre">linear_model.lasso_path</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.linear_model.enet_path.html#sklearn.linear_model.enet_path" title="sklearn.linear_model.enet_path"><code class="xref py py-class docutils literal"><span class="pre">linear_model.enet_path</span></code></a> can return its results in the same
format as that of <a class="reference internal" href="../modules/generated/sklearn.linear_model.lars_path.html#sklearn.linear_model.lars_path" title="sklearn.linear_model.lars_path"><code class="xref py py-class docutils literal"><span class="pre">linear_model.lars_path</span></code></a>. This is done by
setting the <code class="docutils literal"><span class="pre">return_models</span></code> parameter to <code class="docutils literal"><span class="pre">False</span></code>. By
<a class="reference external" href="https://github.com/jaquesgrobler">Jaques Grobler</a> and <a class="reference external" href="http://alexandre.gramfort.net">Alexandre Gramfort</a></li>
<li><code class="xref py py-class docutils literal"><span class="pre">grid_search.IterGrid</span></code> was renamed to
<a class="reference internal" href="../modules/generated/sklearn.grid_search.ParameterGrid.html#sklearn.grid_search.ParameterGrid" title="sklearn.grid_search.ParameterGrid"><code class="xref py py-class docutils literal"><span class="pre">grid_search.ParameterGrid</span></code></a>.</li>
<li>Fixed bug in <code class="xref py py-class docutils literal"><span class="pre">KFold</span></code> causing imperfect class balance in some
cases. By <a class="reference external" href="http://alexandre.gramfort.net">Alexandre Gramfort</a> and Tadej Janež.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree" title="sklearn.neighbors.BallTree"><code class="xref py py-class docutils literal"><span class="pre">sklearn.neighbors.BallTree</span></code></a> has been refactored, and a
<a class="reference internal" href="../modules/generated/sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree" title="sklearn.neighbors.KDTree"><code class="xref py py-class docutils literal"><span class="pre">sklearn.neighbors.KDTree</span></code></a> has been
added which shares the same interface. The Ball Tree now works with
a wide variety of distance metrics. Both classes have many new
methods, including single-tree and dual-tree queries, breadth-first
and depth-first searching, and more advanced queries such as
kernel density estimation and 2-point correlation functions.
By <a class="reference external" href="http://staff.washington.edu/jakevdp/">Jake Vanderplas</a></li>
<li>Support for scipy.spatial.cKDTree within neighbors queries has been
removed, and the functionality replaced with the new <code class="xref py py-class docutils literal"><span class="pre">KDTree</span></code>
class.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity" title="sklearn.neighbors.KernelDensity"><code class="xref py py-class docutils literal"><span class="pre">sklearn.neighbors.KernelDensity</span></code></a> has been added, which performs
efficient kernel density estimation with a variety of kernels.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.decomposition.KernelPCA.html#sklearn.decomposition.KernelPCA" title="sklearn.decomposition.KernelPCA"><code class="xref py py-class docutils literal"><span class="pre">sklearn.decomposition.KernelPCA</span></code></a> now always returns output with
<code class="docutils literal"><span class="pre">n_components</span></code> components, unless the new parameter <code class="docutils literal"><span class="pre">remove_zero_eig</span></code>
is set to <code class="docutils literal"><span class="pre">True</span></code>. This new behavior is consistent with the way
kernel PCA was always documented; previously, the removal of components
with zero eigenvalues was tacitly performed on all data.</li>
<li><code class="docutils literal"><span class="pre">gcv_mode="auto"</span></code> no longer tries to perform SVD on a densified
sparse matrix in <a class="reference internal" href="../modules/generated/sklearn.linear_model.RidgeCV.html#sklearn.linear_model.RidgeCV" title="sklearn.linear_model.RidgeCV"><code class="xref py py-class docutils literal"><span class="pre">sklearn.linear_model.RidgeCV</span></code></a>.</li>
<li>Sparse matrix support in <a class="reference internal" href="../modules/generated/sklearn.decomposition.RandomizedPCA.html#sklearn.decomposition.RandomizedPCA" title="sklearn.decomposition.RandomizedPCA"><code class="xref py py-class docutils literal"><span class="pre">sklearn.decomposition.RandomizedPCA</span></code></a>
is now deprecated in favor of the new <code class="docutils literal"><span class="pre">TruncatedSVD</span></code>.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.cross_validation.KFold.html#sklearn.cross_validation.KFold" title="sklearn.cross_validation.KFold"><code class="xref py py-class docutils literal"><span class="pre">cross_validation.KFold</span></code></a> and
<a class="reference internal" href="../modules/generated/sklearn.cross_validation.StratifiedKFold.html#sklearn.cross_validation.StratifiedKFold" title="sklearn.cross_validation.StratifiedKFold"><code class="xref py py-class docutils literal"><span class="pre">cross_validation.StratifiedKFold</span></code></a> now enforce <cite>n_folds >= 2</cite>
otherwise a <code class="docutils literal"><span class="pre">ValueError</span></code> is raised. By <a class="reference external" href="https://twitter.com/ogrisel">Olivier Grisel</a>.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.datasets.load_files.html#sklearn.datasets.load_files" title="sklearn.datasets.load_files"><code class="xref py py-func docutils literal"><span class="pre">datasets.load_files</span></code></a>’s <code class="docutils literal"><span class="pre">charset</span></code> and <code class="docutils literal"><span class="pre">charset_errors</span></code>
parameters were renamed <code class="docutils literal"><span class="pre">encoding</span></code> and <code class="docutils literal"><span class="pre">decode_errors</span></code>.</li>
<li>Attribute <code class="docutils literal"><span class="pre">oob_score_</span></code> in <a class="reference internal" href="../modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor" title="sklearn.ensemble.GradientBoostingRegressor"><code class="xref py py-class docutils literal"><span class="pre">sklearn.ensemble.GradientBoostingRegressor</span></code></a>
and <a class="reference internal" href="../modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier" title="sklearn.ensemble.GradientBoostingClassifier"><code class="xref py py-class docutils literal"><span class="pre">sklearn.ensemble.GradientBoostingClassifier</span></code></a>
is deprecated and has been replaced by <code class="docutils literal"><span class="pre">oob_improvement_</span></code> .</li>
<li>Attributes in OrthogonalMatchingPursuit have been deprecated
(copy_X, Gram, …) and precompute_gram renamed precompute
for consistency. See #2224.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler" title="sklearn.preprocessing.StandardScaler"><code class="xref py py-class docutils literal"><span class="pre">sklearn.preprocessing.StandardScaler</span></code></a> now converts integer input
to float, and raises a warning. Previously it rounded for dense integer
input.</li>
<li><a class="reference internal" href="../modules/generated/sklearn.multiclass.OneVsRestClassifier.html#sklearn.multiclass.OneVsRestClassifier" title="sklearn.multiclass.OneVsRestClassifier"><code class="xref py py-class docutils literal"><span class="pre">sklearn.multiclass.OneVsRestClassifier</span></code></a> now has a
<code class="docutils literal"><span class="pre">decision_function</span></code> method. This will return the distance of each
sample from the decision boundary for each class, as long as the
underlying estimators implement the <code class="docutils literal"><span class="pre">decision_function</span></code> method.
By <a class="reference external" href="http://kastnerkyle.github.io">Kyle Kastner</a>.</li>
<li>Better input validation, warning on unexpected shapes for y.</li>
</ul>
</div>
<div class="section" id="people">
<h2>People<a class="headerlink" href="#people" title="Permalink to this headline">¶</a></h2>
<p>List of contributors for release 0.14 by number of commits.</p>
<blockquote>
<div><ul class="simple">
<li>277 Gilles Louppe</li>
<li>245 Lars Buitinck</li>
<li>187 Andreas Mueller</li>
<li>124 Arnaud Joly</li>
<li>112 Jaques Grobler</li>
<li>109 Gael Varoquaux</li>
<li>107 Olivier Grisel</li>
<li>102 Noel Dawe</li>
<li>99 Kemal Eren</li>
<li>79 Joel Nothman</li>
<li>75 Jake VanderPlas</li>
<li>73 Nelle Varoquaux</li>
<li>71 Vlad Niculae</li>
<li>65 Peter Prettenhofer</li>
<li>64 Alexandre Gramfort</li>
<li>54 Mathieu Blondel</li>
<li>38 Nicolas Trésegnie</li>
<li>35 eustache</li>
<li>27 Denis Engemann</li>
<li>25 Yann N. Dauphin</li>
<li>19 Justin Vincent</li>
<li>17 Robert Layton</li>
<li>15 Doug Coleman</li>
<li>14 Michael Eickenberg</li>
<li>13 Robert Marchman</li>
<li>11 Fabian Pedregosa</li>
<li>11 Philippe Gervais</li>
<li>10 Jim Holmström</li>
<li>10 Tadej Janež</li>
<li>10 syhw</li>
<li>9 Mikhail Korobov</li>
<li>9 Steven De Gryze</li>
<li>8 sergeyf</li>
<li>7 Ben Root</li>
<li>7 Hrishikesh Huilgolkar</li>
<li>6 Kyle Kastner</li>
<li>6 Martin Luessi</li>
<li>6 Rob Speer</li>
<li>5 Federico Vaggi</li>
<li>5 Raul Garreta</li>
<li>5 Rob Zinkov</li>
<li>4 Ken Geis</li>
<li>3 A. Flaxman</li>
<li>3 Denton Cockburn</li>
<li>3 Dougal Sutherland</li>
<li>3 Ian Ozsvald</li>
<li>3 Johannes Schönberger</li>
<li>3 Robert McGibbon</li>
<li>3 Roman Sinayev</li>
<li>3 Szabo Roland</li>
<li>2 Diego Molla</li>
<li>2 Imran Haque</li>
<li>2 Jochen Wersdörfer</li>
<li>2 Sergey Karayev</li>
<li>2 Yannick Schwartz</li>
<li>2 jamestwebber</li>
<li>1 Abhijeet Kolhe</li>
<li>1 Alexander Fabisch</li>
<li>1 Bastiaan van den Berg</li>
<li>1 Benjamin Peterson</li>
<li>1 Daniel Velkov</li>
<li>1 Fazlul Shahriar</li>
<li>1 Felix Brockherde</li>
<li>1 Félix-Antoine Fortin</li>
<li>1 Harikrishnan S</li>
<li>1 Jack Hale</li>
<li>1 JakeMick</li>
<li>1 James McDermott</li>
<li>1 John Benediktsson</li>
<li>1 John Zwinck</li>
<li>1 Joshua Vredevoogd</li>
<li>1 Justin Pati</li>
<li>1 Kevin Hughes</li>
<li>1 Kyle Kelley</li>
<li>1 Matthias Ekman</li>
<li>1 Miroslav Shubernetskiy</li>
<li>1 Naoki Orii</li>
<li>1 Norbert Crombach</li>
<li>1 Rafael Cunha de Almeida</li>
<li>1 Rolando Espinoza La fuente</li>
<li>1 Seamus Abshere</li>
<li>1 Sergey Feldman</li>
<li>1 Sergio Medina</li>
<li>1 Stefano Lattarini</li>
<li>1 Steve Koch</li>
<li>1 Sturla Molden</li>
<li>1 Thomas Jarosch</li>
<li>1 Yaroslav Halchenko</li>
</ul>
</div></blockquote>
</div>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
<div class="footer">
© 2007 - 2018, scikit-learn developers (BSD License).
<a href="../_sources/whats_new/v0.14.rst.txt" rel="nofollow">Show this page source</a>
</div>
<div class="rel">
<div class="buttonPrevious">
<a href="v0.15.html">Previous
</a>
</div>
<div class="buttonNext">
<a href="v0.13.html">Next
</a>
</div>
</div>
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-22606712-2']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<script>
(function() {
var cx = '016639176250731907682:tjtqbvtvij0';
var gcse = document.createElement('script'); gcse.type = 'text/javascript'; gcse.async = true;
gcse.src = 'https://cse.google.com/cse.js?cx=' + cx;
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(gcse, s);
})();
</script>
</body>
</html>