forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_estimator_representation.py
52 lines (42 loc) · 1.67 KB
/
plot_estimator_representation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""
===========================================
Displaying estimators and complex pipelines
===========================================
This example illustrates different ways estimators and pipelines can be
displayed.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler
# %%
# Compact text representation
# ---------------------------
#
# Estimators will only show the parameters that have been set to non-default
# values when displayed as a string. This reduces the visual noise and makes it
# easier to spot what the differences are when comparing instances.
lr = LogisticRegression(penalty="l1")
print(lr)
# %%
# Rich HTML representation
# ------------------------
# In notebooks estimators and pipelines will use a rich HTML representation.
# This is particularly useful to summarise the
# structure of pipelines and other composite estimators, with interactivity to
# provide detail. Click on the example image below to expand Pipeline
# elements. See :ref:`visualizing_composite_estimators` for how you can use
# this feature.
num_proc = make_pipeline(SimpleImputer(strategy="median"), StandardScaler())
cat_proc = make_pipeline(
SimpleImputer(strategy="constant", fill_value="missing"),
OneHotEncoder(handle_unknown="ignore"),
)
preprocessor = make_column_transformer(
(num_proc, ("feat1", "feat3")), (cat_proc, ("feat0", "feat2"))
)
clf = make_pipeline(preprocessor, LogisticRegression())
clf