forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_gradient_boosting_regression.py
166 lines (145 loc) · 5.48 KB
/
plot_gradient_boosting_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
============================
Gradient Boosting regression
============================
This example demonstrates Gradient Boosting to produce a predictive
model from an ensemble of weak predictive models. Gradient boosting can be used
for regression and classification problems. Here, we will train a model to
tackle a diabetes regression task. We will obtain the results from
:class:`~sklearn.ensemble.GradientBoostingRegressor` with least squares loss
and 500 regression trees of depth 4.
Note: For larger datasets (n_samples >= 10000), please refer to
:class:`~sklearn.ensemble.HistGradientBoostingRegressor`. See
:ref:`sphx_glr_auto_examples_ensemble_plot_hgbt_regression.py` for an example
showcasing some other advantages of
:class:`~ensemble.HistGradientBoostingRegressor`.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, ensemble
from sklearn.inspection import permutation_importance
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.utils.fixes import parse_version
# %%
# Load the data
# -------------------------------------
#
# First we need to load the data.
diabetes = datasets.load_diabetes()
X, y = diabetes.data, diabetes.target
# %%
# Data preprocessing
# -------------------------------------
#
# Next, we will split our dataset to use 90% for training and leave the rest
# for testing. We will also set the regression model parameters. You can play
# with these parameters to see how the results change.
#
# `n_estimators` : the number of boosting stages that will be performed.
# Later, we will plot deviance against boosting iterations.
#
# `max_depth` : limits the number of nodes in the tree.
# The best value depends on the interaction of the input variables.
#
# `min_samples_split` : the minimum number of samples required to split an
# internal node.
#
# `learning_rate` : how much the contribution of each tree will shrink.
#
# `loss` : loss function to optimize. The least squares function is used in
# this case however, there are many other options (see
# :class:`~sklearn.ensemble.GradientBoostingRegressor` ).
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.1, random_state=13
)
params = {
"n_estimators": 500,
"max_depth": 4,
"min_samples_split": 5,
"learning_rate": 0.01,
"loss": "squared_error",
}
# %%
# Fit regression model
# --------------------
#
# Now we will initiate the gradient boosting regressors and fit it with our
# training data. Let's also look and the mean squared error on the test data.
reg = ensemble.GradientBoostingRegressor(**params)
reg.fit(X_train, y_train)
mse = mean_squared_error(y_test, reg.predict(X_test))
print("The mean squared error (MSE) on test set: {:.4f}".format(mse))
# %%
# Plot training deviance
# ----------------------
#
# Finally, we will visualize the results. To do that we will first compute the
# test set deviance and then plot it against boosting iterations.
test_score = np.zeros((params["n_estimators"],), dtype=np.float64)
for i, y_pred in enumerate(reg.staged_predict(X_test)):
test_score[i] = mean_squared_error(y_test, y_pred)
fig = plt.figure(figsize=(6, 6))
plt.subplot(1, 1, 1)
plt.title("Deviance")
plt.plot(
np.arange(params["n_estimators"]) + 1,
reg.train_score_,
"b-",
label="Training Set Deviance",
)
plt.plot(
np.arange(params["n_estimators"]) + 1, test_score, "r-", label="Test Set Deviance"
)
plt.legend(loc="upper right")
plt.xlabel("Boosting Iterations")
plt.ylabel("Deviance")
fig.tight_layout()
plt.show()
# %%
# Plot feature importance
# -----------------------
#
# .. warning::
# Careful, impurity-based feature importances can be misleading for
# **high cardinality** features (many unique values). As an alternative,
# the permutation importances of ``reg`` can be computed on a
# held out test set. See :ref:`permutation_importance` for more details.
#
# For this example, the impurity-based and permutation methods identify the
# same 2 strongly predictive features but not in the same order. The third most
# predictive feature, "bp", is also the same for the 2 methods. The remaining
# features are less predictive and the error bars of the permutation plot
# show that they overlap with 0.
feature_importance = reg.feature_importances_
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + 0.5
fig = plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.barh(pos, feature_importance[sorted_idx], align="center")
plt.yticks(pos, np.array(diabetes.feature_names)[sorted_idx])
plt.title("Feature Importance (MDI)")
result = permutation_importance(
reg, X_test, y_test, n_repeats=10, random_state=42, n_jobs=2
)
sorted_idx = result.importances_mean.argsort()
plt.subplot(1, 2, 2)
# `labels` argument in boxplot is deprecated in matplotlib 3.9 and has been
# renamed to `tick_labels`. The following code handles this, but as a
# scikit-learn user you probably can write simpler code by using `labels=...`
# (matplotlib < 3.9) or `tick_labels=...` (matplotlib >= 3.9).
tick_labels_parameter_name = (
"tick_labels"
if parse_version(matplotlib.__version__) >= parse_version("3.9")
else "labels"
)
tick_labels_dict = {
tick_labels_parameter_name: np.array(diabetes.feature_names)[sorted_idx]
}
plt.boxplot(result.importances[sorted_idx].T, vert=False, **tick_labels_dict)
plt.title("Permutation Importance (test set)")
fig.tight_layout()
plt.show()