forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_faces_decomposition.py
339 lines (290 loc) · 10.4 KB
/
plot_faces_decomposition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""
============================
Faces dataset decompositions
============================
This example applies to :ref:`olivetti_faces_dataset` different unsupervised
matrix decomposition (dimension reduction) methods from the module
:mod:`sklearn.decomposition` (see the documentation chapter
:ref:`decompositions`).
- Authors: Vlad Niculae, Alexandre Gramfort
- License: BSD 3 clause
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
# %%
# Dataset preparation
# -------------------
#
# Loading and preprocessing the Olivetti faces dataset.
import logging
import matplotlib.pyplot as plt
from numpy.random import RandomState
from sklearn import cluster, decomposition
from sklearn.datasets import fetch_olivetti_faces
rng = RandomState(0)
# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")
faces, _ = fetch_olivetti_faces(return_X_y=True, shuffle=True, random_state=rng)
n_samples, n_features = faces.shape
# Global centering (focus on one feature, centering all samples)
faces_centered = faces - faces.mean(axis=0)
# Local centering (focus on one sample, centering all features)
faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1)
print("Dataset consists of %d faces" % n_samples)
# %%
# Define a base function to plot the gallery of faces.
n_row, n_col = 2, 3
n_components = n_row * n_col
image_shape = (64, 64)
def plot_gallery(title, images, n_col=n_col, n_row=n_row, cmap=plt.cm.gray):
fig, axs = plt.subplots(
nrows=n_row,
ncols=n_col,
figsize=(2.0 * n_col, 2.3 * n_row),
facecolor="white",
constrained_layout=True,
)
fig.set_constrained_layout_pads(w_pad=0.01, h_pad=0.02, hspace=0, wspace=0)
fig.set_edgecolor("black")
fig.suptitle(title, size=16)
for ax, vec in zip(axs.flat, images):
vmax = max(vec.max(), -vec.min())
im = ax.imshow(
vec.reshape(image_shape),
cmap=cmap,
interpolation="nearest",
vmin=-vmax,
vmax=vmax,
)
ax.axis("off")
fig.colorbar(im, ax=axs, orientation="horizontal", shrink=0.99, aspect=40, pad=0.01)
plt.show()
# %%
# Let's take a look at our data. Gray color indicates negative values,
# white indicates positive values.
plot_gallery("Faces from dataset", faces_centered[:n_components])
# %%
# Decomposition
# -------------
#
# Initialise different estimators for decomposition and fit each
# of them on all images and plot some results. Each estimator extracts
# 6 components as vectors :math:`h \in \mathbb{R}^{4096}`.
# We just displayed these vectors in human-friendly visualisation as 64x64 pixel images.
#
# Read more in the :ref:`User Guide <decompositions>`.
# %%
# Eigenfaces - PCA using randomized SVD
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Linear dimensionality reduction using Singular Value Decomposition (SVD) of the data
# to project it to a lower dimensional space.
#
#
# .. note::
#
# The Eigenfaces estimator, via the :py:mod:`sklearn.decomposition.PCA`,
# also provides a scalar `noise_variance_` (the mean of pixelwise variance)
# that cannot be displayed as an image.
# %%
pca_estimator = decomposition.PCA(
n_components=n_components, svd_solver="randomized", whiten=True
)
pca_estimator.fit(faces_centered)
plot_gallery(
"Eigenfaces - PCA using randomized SVD", pca_estimator.components_[:n_components]
)
# %%
# Non-negative components - NMF
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Estimate non-negative original data as production of two non-negative matrices.
# %%
nmf_estimator = decomposition.NMF(n_components=n_components, tol=5e-3)
nmf_estimator.fit(faces) # original non- negative dataset
plot_gallery("Non-negative components - NMF", nmf_estimator.components_[:n_components])
# %%
# Independent components - FastICA
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Independent component analysis separates a multivariate vectors into additive
# subcomponents that are maximally independent.
# %%
ica_estimator = decomposition.FastICA(
n_components=n_components, max_iter=400, whiten="arbitrary-variance", tol=15e-5
)
ica_estimator.fit(faces_centered)
plot_gallery(
"Independent components - FastICA", ica_estimator.components_[:n_components]
)
# %%
# Sparse components - MiniBatchSparsePCA
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Mini-batch sparse PCA (:class:`~sklearn.decomposition.MiniBatchSparsePCA`)
# extracts the set of sparse components that best reconstruct the data. This
# variant is faster but less accurate than the similar
# :class:`~sklearn.decomposition.SparsePCA`.
# %%
batch_pca_estimator = decomposition.MiniBatchSparsePCA(
n_components=n_components, alpha=0.1, max_iter=100, batch_size=3, random_state=rng
)
batch_pca_estimator.fit(faces_centered)
plot_gallery(
"Sparse components - MiniBatchSparsePCA",
batch_pca_estimator.components_[:n_components],
)
# %%
# Dictionary learning
# ^^^^^^^^^^^^^^^^^^^
#
# By default, :class:`~sklearn.decomposition.MiniBatchDictionaryLearning`
# divides the data into mini-batches and optimizes in an online manner by
# cycling over the mini-batches for the specified number of iterations.
# %%
batch_dict_estimator = decomposition.MiniBatchDictionaryLearning(
n_components=n_components, alpha=0.1, max_iter=50, batch_size=3, random_state=rng
)
batch_dict_estimator.fit(faces_centered)
plot_gallery("Dictionary learning", batch_dict_estimator.components_[:n_components])
# %%
# Cluster centers - MiniBatchKMeans
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# :class:`sklearn.cluster.MiniBatchKMeans` is computationally efficient and
# implements on-line learning with a
# :meth:`~sklearn.cluster.MiniBatchKMeans.partial_fit` method. That is
# why it could be beneficial to enhance some time-consuming algorithms with
# :class:`~sklearn.cluster.MiniBatchKMeans`.
# %%
kmeans_estimator = cluster.MiniBatchKMeans(
n_clusters=n_components,
tol=1e-3,
batch_size=20,
max_iter=50,
random_state=rng,
)
kmeans_estimator.fit(faces_centered)
plot_gallery(
"Cluster centers - MiniBatchKMeans",
kmeans_estimator.cluster_centers_[:n_components],
)
# %%
# Factor Analysis components - FA
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# :class:`~sklearn.decomposition.FactorAnalysis` is similar to
# :class:`~sklearn.decomposition.PCA` but has the advantage of modelling the
# variance in every direction of the input space independently (heteroscedastic
# noise). Read more in the :ref:`User Guide <FA>`.
# %%
fa_estimator = decomposition.FactorAnalysis(n_components=n_components, max_iter=20)
fa_estimator.fit(faces_centered)
plot_gallery("Factor Analysis (FA)", fa_estimator.components_[:n_components])
# --- Pixelwise variance
plt.figure(figsize=(3.2, 3.6), facecolor="white", tight_layout=True)
vec = fa_estimator.noise_variance_
vmax = max(vec.max(), -vec.min())
plt.imshow(
vec.reshape(image_shape),
cmap=plt.cm.gray,
interpolation="nearest",
vmin=-vmax,
vmax=vmax,
)
plt.axis("off")
plt.title("Pixelwise variance from \n Factor Analysis (FA)", size=16, wrap=True)
plt.colorbar(orientation="horizontal", shrink=0.8, pad=0.03)
plt.show()
# %%
# Decomposition: Dictionary learning
# ----------------------------------
#
# In the further section, let's consider :ref:`DictionaryLearning` more precisely.
# Dictionary learning is a problem that amounts to finding a sparse representation
# of the input data as a combination of simple elements. These simple elements form
# a dictionary. It is possible to constrain the dictionary and/or coding coefficients
# to be positive to match constraints that may be present in the data.
#
# :class:`~sklearn.decomposition.MiniBatchDictionaryLearning` implements a
# faster, but less accurate version of the dictionary learning algorithm that
# is better suited for large datasets. Read more in the :ref:`User Guide
# <MiniBatchDictionaryLearning>`.
# %%
# Plot the same samples from our dataset but with another colormap.
# Red indicates negative values, blue indicates positive values,
# and white represents zeros.
plot_gallery("Faces from dataset", faces_centered[:n_components], cmap=plt.cm.RdBu)
# %%
# Similar to the previous examples, we change parameters and train
# :class:`~sklearn.decomposition.MiniBatchDictionaryLearning` estimator on all
# images. Generally, the dictionary learning and sparse encoding decompose
# input data into the dictionary and the coding coefficients matrices. :math:`X
# \approx UV`, where :math:`X = [x_1, . . . , x_n]`, :math:`X \in
# \mathbb{R}^{m×n}`, dictionary :math:`U \in \mathbb{R}^{m×k}`, coding
# coefficients :math:`V \in \mathbb{R}^{k×n}`.
#
# Also below are the results when the dictionary and coding
# coefficients are positively constrained.
# %%
# Dictionary learning - positive dictionary
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# In the following section we enforce positivity when finding the dictionary.
# %%
dict_pos_dict_estimator = decomposition.MiniBatchDictionaryLearning(
n_components=n_components,
alpha=0.1,
max_iter=50,
batch_size=3,
random_state=rng,
positive_dict=True,
)
dict_pos_dict_estimator.fit(faces_centered)
plot_gallery(
"Dictionary learning - positive dictionary",
dict_pos_dict_estimator.components_[:n_components],
cmap=plt.cm.RdBu,
)
# %%
# Dictionary learning - positive code
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Below we constrain the coding coefficients as a positive matrix.
# %%
dict_pos_code_estimator = decomposition.MiniBatchDictionaryLearning(
n_components=n_components,
alpha=0.1,
max_iter=50,
batch_size=3,
fit_algorithm="cd",
random_state=rng,
positive_code=True,
)
dict_pos_code_estimator.fit(faces_centered)
plot_gallery(
"Dictionary learning - positive code",
dict_pos_code_estimator.components_[:n_components],
cmap=plt.cm.RdBu,
)
# %%
# Dictionary learning - positive dictionary & code
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Also below are the results if the dictionary values and coding
# coefficients are positively constrained.
# %%
dict_pos_estimator = decomposition.MiniBatchDictionaryLearning(
n_components=n_components,
alpha=0.1,
max_iter=50,
batch_size=3,
fit_algorithm="cd",
random_state=rng,
positive_dict=True,
positive_code=True,
)
dict_pos_estimator.fit(faces_centered)
plot_gallery(
"Dictionary learning - positive dictionary & code",
dict_pos_estimator.components_[:n_components],
cmap=plt.cm.RdBu,
)