forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_rcv1_logreg_convergence.py
311 lines (264 loc) · 7.56 KB
/
bench_rcv1_logreg_convergence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import gc
import time
import matplotlib.pyplot as plt
import numpy as np
from joblib import Memory
from sklearn.datasets import fetch_rcv1
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.linear_model._sag import get_auto_step_size
try:
import lightning.classification as lightning_clf
except ImportError:
lightning_clf = None
m = Memory(cachedir=".", verbose=0)
# compute logistic loss
def get_loss(w, intercept, myX, myy, C):
n_samples = myX.shape[0]
w = w.ravel()
p = np.mean(np.log(1.0 + np.exp(-myy * (myX.dot(w) + intercept))))
print("%f + %f" % (p, w.dot(w) / 2.0 / C / n_samples))
p += w.dot(w) / 2.0 / C / n_samples
return p
# We use joblib to cache individual fits. Note that we do not pass the dataset
# as argument as the hashing would be too slow, so we assume that the dataset
# never changes.
@m.cache()
def bench_one(name, clf_type, clf_params, n_iter):
clf = clf_type(**clf_params)
try:
clf.set_params(max_iter=n_iter, random_state=42)
except Exception:
clf.set_params(n_iter=n_iter, random_state=42)
st = time.time()
clf.fit(X, y)
end = time.time()
try:
C = 1.0 / clf.alpha / n_samples
except Exception:
C = clf.C
try:
intercept = clf.intercept_
except Exception:
intercept = 0.0
train_loss = get_loss(clf.coef_, intercept, X, y, C)
train_score = clf.score(X, y)
test_score = clf.score(X_test, y_test)
duration = end - st
return train_loss, train_score, test_score, duration
def bench(clfs):
for (
name,
clf,
iter_range,
train_losses,
train_scores,
test_scores,
durations,
) in clfs:
print("training %s" % name)
clf_type = type(clf)
clf_params = clf.get_params()
for n_iter in iter_range:
gc.collect()
train_loss, train_score, test_score, duration = bench_one(
name, clf_type, clf_params, n_iter
)
train_losses.append(train_loss)
train_scores.append(train_score)
test_scores.append(test_score)
durations.append(duration)
print("classifier: %s" % name)
print("train_loss: %.8f" % train_loss)
print("train_score: %.8f" % train_score)
print("test_score: %.8f" % test_score)
print("time for fit: %.8f seconds" % duration)
print("")
print("")
return clfs
def plot_train_losses(clfs):
plt.figure()
for name, _, _, train_losses, _, _, durations in clfs:
plt.plot(durations, train_losses, "-o", label=name)
plt.legend(loc=0)
plt.xlabel("seconds")
plt.ylabel("train loss")
def plot_train_scores(clfs):
plt.figure()
for name, _, _, _, train_scores, _, durations in clfs:
plt.plot(durations, train_scores, "-o", label=name)
plt.legend(loc=0)
plt.xlabel("seconds")
plt.ylabel("train score")
plt.ylim((0.92, 0.96))
def plot_test_scores(clfs):
plt.figure()
for name, _, _, _, _, test_scores, durations in clfs:
plt.plot(durations, test_scores, "-o", label=name)
plt.legend(loc=0)
plt.xlabel("seconds")
plt.ylabel("test score")
plt.ylim((0.92, 0.96))
def plot_dloss(clfs):
plt.figure()
pobj_final = []
for name, _, _, train_losses, _, _, durations in clfs:
pobj_final.append(train_losses[-1])
indices = np.argsort(pobj_final)
pobj_best = pobj_final[indices[0]]
for name, _, _, train_losses, _, _, durations in clfs:
log_pobj = np.log(abs(np.array(train_losses) - pobj_best)) / np.log(10)
plt.plot(durations, log_pobj, "-o", label=name)
plt.legend(loc=0)
plt.xlabel("seconds")
plt.ylabel("log(best - train_loss)")
def get_max_squared_sum(X):
"""Get the maximum row-wise sum of squares"""
return np.sum(X**2, axis=1).max()
rcv1 = fetch_rcv1()
X = rcv1.data
n_samples, n_features = X.shape
# consider the binary classification problem 'CCAT' vs the rest
ccat_idx = rcv1.target_names.tolist().index("CCAT")
y = rcv1.target.tocsc()[:, ccat_idx].toarray().ravel().astype(np.float64)
y[y == 0] = -1
# parameters
C = 1.0
fit_intercept = True
tol = 1.0e-14
# max_iter range
sgd_iter_range = list(range(1, 121, 10))
newton_iter_range = list(range(1, 25, 3))
lbfgs_iter_range = list(range(1, 242, 12))
liblinear_iter_range = list(range(1, 37, 3))
liblinear_dual_iter_range = list(range(1, 85, 6))
sag_iter_range = list(range(1, 37, 3))
clfs = [
(
"LR-liblinear",
LogisticRegression(
C=C,
tol=tol,
solver="liblinear",
fit_intercept=fit_intercept,
intercept_scaling=1,
),
liblinear_iter_range,
[],
[],
[],
[],
),
(
"LR-liblinear-dual",
LogisticRegression(
C=C,
tol=tol,
dual=True,
solver="liblinear",
fit_intercept=fit_intercept,
intercept_scaling=1,
),
liblinear_dual_iter_range,
[],
[],
[],
[],
),
(
"LR-SAG",
LogisticRegression(C=C, tol=tol, solver="sag", fit_intercept=fit_intercept),
sag_iter_range,
[],
[],
[],
[],
),
(
"LR-newton-cg",
LogisticRegression(
C=C, tol=tol, solver="newton-cg", fit_intercept=fit_intercept
),
newton_iter_range,
[],
[],
[],
[],
),
(
"LR-lbfgs",
LogisticRegression(C=C, tol=tol, solver="lbfgs", fit_intercept=fit_intercept),
lbfgs_iter_range,
[],
[],
[],
[],
),
(
"SGD",
SGDClassifier(
alpha=1.0 / C / n_samples,
penalty="l2",
loss="log_loss",
fit_intercept=fit_intercept,
verbose=0,
),
sgd_iter_range,
[],
[],
[],
[],
),
]
if lightning_clf is not None and not fit_intercept:
alpha = 1.0 / C / n_samples
# compute the same step_size than in LR-sag
max_squared_sum = get_max_squared_sum(X)
step_size = get_auto_step_size(max_squared_sum, alpha, "log", fit_intercept)
clfs.append(
(
"Lightning-SVRG",
lightning_clf.SVRGClassifier(
alpha=alpha, eta=step_size, tol=tol, loss="log"
),
sag_iter_range,
[],
[],
[],
[],
)
)
clfs.append(
(
"Lightning-SAG",
lightning_clf.SAGClassifier(
alpha=alpha, eta=step_size, tol=tol, loss="log"
),
sag_iter_range,
[],
[],
[],
[],
)
)
# We keep only 200 features, to have a dense dataset,
# and compare to lightning SAG, which seems incorrect in the sparse case.
X_csc = X.tocsc()
nnz_in_each_features = X_csc.indptr[1:] - X_csc.indptr[:-1]
X = X_csc[:, np.argsort(nnz_in_each_features)[-200:]]
X = X.toarray()
print("dataset: %.3f MB" % (X.nbytes / 1e6))
# Split training and testing. Switch train and test subset compared to
# LYRL2004 split, to have a larger training dataset.
n = 23149
X_test = X[:n, :]
y_test = y[:n]
X = X[n:, :]
y = y[n:]
clfs = bench(clfs)
plot_train_scores(clfs)
plot_test_scores(clfs)
plot_train_losses(clfs)
plot_dloss(clfs)
plt.show()