forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_hist_gradient_boosting.py
292 lines (258 loc) · 9.29 KB
/
bench_hist_gradient_boosting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import argparse
from time import time
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_classification, make_regression
from sklearn.ensemble import (
HistGradientBoostingClassifier,
HistGradientBoostingRegressor,
)
from sklearn.ensemble._hist_gradient_boosting.utils import get_equivalent_estimator
from sklearn.model_selection import train_test_split
parser = argparse.ArgumentParser()
parser.add_argument("--n-leaf-nodes", type=int, default=31)
parser.add_argument("--n-trees", type=int, default=10)
parser.add_argument(
"--lightgbm", action="store_true", default=False, help="also plot lightgbm"
)
parser.add_argument(
"--xgboost", action="store_true", default=False, help="also plot xgboost"
)
parser.add_argument(
"--catboost", action="store_true", default=False, help="also plot catboost"
)
parser.add_argument("--learning-rate", type=float, default=0.1)
parser.add_argument(
"--problem",
type=str,
default="classification",
choices=["classification", "regression"],
)
parser.add_argument("--loss", type=str, default="default")
parser.add_argument("--missing-fraction", type=float, default=0)
parser.add_argument("--n-classes", type=int, default=2)
parser.add_argument("--n-samples-max", type=int, default=int(1e6))
parser.add_argument("--n-features", type=int, default=20)
parser.add_argument("--max-bins", type=int, default=255)
parser.add_argument(
"--random-sample-weights",
action="store_true",
default=False,
help="generate and use random sample weights",
)
args = parser.parse_args()
n_leaf_nodes = args.n_leaf_nodes
n_trees = args.n_trees
lr = args.learning_rate
max_bins = args.max_bins
def get_estimator_and_data():
if args.problem == "classification":
X, y = make_classification(
args.n_samples_max * 2,
n_features=args.n_features,
n_classes=args.n_classes,
n_clusters_per_class=1,
n_informative=args.n_classes,
random_state=0,
)
return X, y, HistGradientBoostingClassifier
elif args.problem == "regression":
X, y = make_regression(
args.n_samples_max * 2, n_features=args.n_features, random_state=0
)
return X, y, HistGradientBoostingRegressor
X, y, Estimator = get_estimator_and_data()
if args.missing_fraction:
mask = np.random.binomial(1, args.missing_fraction, size=X.shape).astype(bool)
X[mask] = np.nan
if args.random_sample_weights:
sample_weight = np.random.rand(len(X)) * 10
else:
sample_weight = None
if sample_weight is not None:
(X_train_, X_test_, y_train_, y_test_, sample_weight_train_, _) = train_test_split(
X, y, sample_weight, test_size=0.5, random_state=0
)
else:
X_train_, X_test_, y_train_, y_test_ = train_test_split(
X, y, test_size=0.5, random_state=0
)
sample_weight_train_ = None
def one_run(n_samples):
X_train = X_train_[:n_samples]
X_test = X_test_[:n_samples]
y_train = y_train_[:n_samples]
y_test = y_test_[:n_samples]
if sample_weight is not None:
sample_weight_train = sample_weight_train_[:n_samples]
else:
sample_weight_train = None
assert X_train.shape[0] == n_samples
assert X_test.shape[0] == n_samples
print("Data size: %d samples train, %d samples test." % (n_samples, n_samples))
print("Fitting a sklearn model...")
tic = time()
est = Estimator(
learning_rate=lr,
max_iter=n_trees,
max_bins=max_bins,
max_leaf_nodes=n_leaf_nodes,
early_stopping=False,
random_state=0,
verbose=0,
)
loss = args.loss
if args.problem == "classification":
if loss == "default":
loss = "log_loss"
else:
# regression
if loss == "default":
loss = "squared_error"
est.set_params(loss=loss)
est.fit(X_train, y_train, sample_weight=sample_weight_train)
sklearn_fit_duration = time() - tic
tic = time()
sklearn_score = est.score(X_test, y_test)
sklearn_score_duration = time() - tic
print("score: {:.4f}".format(sklearn_score))
print("fit duration: {:.3f}s,".format(sklearn_fit_duration))
print("score duration: {:.3f}s,".format(sklearn_score_duration))
lightgbm_score = None
lightgbm_fit_duration = None
lightgbm_score_duration = None
if args.lightgbm:
print("Fitting a LightGBM model...")
lightgbm_est = get_equivalent_estimator(
est, lib="lightgbm", n_classes=args.n_classes
)
tic = time()
lightgbm_est.fit(X_train, y_train, sample_weight=sample_weight_train)
lightgbm_fit_duration = time() - tic
tic = time()
lightgbm_score = lightgbm_est.score(X_test, y_test)
lightgbm_score_duration = time() - tic
print("score: {:.4f}".format(lightgbm_score))
print("fit duration: {:.3f}s,".format(lightgbm_fit_duration))
print("score duration: {:.3f}s,".format(lightgbm_score_duration))
xgb_score = None
xgb_fit_duration = None
xgb_score_duration = None
if args.xgboost:
print("Fitting an XGBoost model...")
xgb_est = get_equivalent_estimator(est, lib="xgboost", n_classes=args.n_classes)
tic = time()
xgb_est.fit(X_train, y_train, sample_weight=sample_weight_train)
xgb_fit_duration = time() - tic
tic = time()
xgb_score = xgb_est.score(X_test, y_test)
xgb_score_duration = time() - tic
print("score: {:.4f}".format(xgb_score))
print("fit duration: {:.3f}s,".format(xgb_fit_duration))
print("score duration: {:.3f}s,".format(xgb_score_duration))
cat_score = None
cat_fit_duration = None
cat_score_duration = None
if args.catboost:
print("Fitting a CatBoost model...")
cat_est = get_equivalent_estimator(
est, lib="catboost", n_classes=args.n_classes
)
tic = time()
cat_est.fit(X_train, y_train, sample_weight=sample_weight_train)
cat_fit_duration = time() - tic
tic = time()
cat_score = cat_est.score(X_test, y_test)
cat_score_duration = time() - tic
print("score: {:.4f}".format(cat_score))
print("fit duration: {:.3f}s,".format(cat_fit_duration))
print("score duration: {:.3f}s,".format(cat_score_duration))
return (
sklearn_score,
sklearn_fit_duration,
sklearn_score_duration,
lightgbm_score,
lightgbm_fit_duration,
lightgbm_score_duration,
xgb_score,
xgb_fit_duration,
xgb_score_duration,
cat_score,
cat_fit_duration,
cat_score_duration,
)
n_samples_list = [1000, 10000, 100000, 500000, 1000000, 5000000, 10000000]
n_samples_list = [
n_samples for n_samples in n_samples_list if n_samples <= args.n_samples_max
]
sklearn_scores = []
sklearn_fit_durations = []
sklearn_score_durations = []
lightgbm_scores = []
lightgbm_fit_durations = []
lightgbm_score_durations = []
xgb_scores = []
xgb_fit_durations = []
xgb_score_durations = []
cat_scores = []
cat_fit_durations = []
cat_score_durations = []
for n_samples in n_samples_list:
(
sklearn_score,
sklearn_fit_duration,
sklearn_score_duration,
lightgbm_score,
lightgbm_fit_duration,
lightgbm_score_duration,
xgb_score,
xgb_fit_duration,
xgb_score_duration,
cat_score,
cat_fit_duration,
cat_score_duration,
) = one_run(n_samples)
for scores, score in (
(sklearn_scores, sklearn_score),
(sklearn_fit_durations, sklearn_fit_duration),
(sklearn_score_durations, sklearn_score_duration),
(lightgbm_scores, lightgbm_score),
(lightgbm_fit_durations, lightgbm_fit_duration),
(lightgbm_score_durations, lightgbm_score_duration),
(xgb_scores, xgb_score),
(xgb_fit_durations, xgb_fit_duration),
(xgb_score_durations, xgb_score_duration),
(cat_scores, cat_score),
(cat_fit_durations, cat_fit_duration),
(cat_score_durations, cat_score_duration),
):
scores.append(score)
fig, axs = plt.subplots(3, sharex=True)
axs[0].plot(n_samples_list, sklearn_scores, label="sklearn")
axs[1].plot(n_samples_list, sklearn_fit_durations, label="sklearn")
axs[2].plot(n_samples_list, sklearn_score_durations, label="sklearn")
if args.lightgbm:
axs[0].plot(n_samples_list, lightgbm_scores, label="lightgbm")
axs[1].plot(n_samples_list, lightgbm_fit_durations, label="lightgbm")
axs[2].plot(n_samples_list, lightgbm_score_durations, label="lightgbm")
if args.xgboost:
axs[0].plot(n_samples_list, xgb_scores, label="XGBoost")
axs[1].plot(n_samples_list, xgb_fit_durations, label="XGBoost")
axs[2].plot(n_samples_list, xgb_score_durations, label="XGBoost")
if args.catboost:
axs[0].plot(n_samples_list, cat_scores, label="CatBoost")
axs[1].plot(n_samples_list, cat_fit_durations, label="CatBoost")
axs[2].plot(n_samples_list, cat_score_durations, label="CatBoost")
for ax in axs:
ax.set_xscale("log")
ax.legend(loc="best")
ax.set_xlabel("n_samples")
axs[0].set_title("scores")
axs[1].set_title("fit duration (s)")
axs[2].set_title("score duration (s)")
title = args.problem
if args.problem == "classification":
title += " n_classes = {}".format(args.n_classes)
fig.suptitle(title)
plt.tight_layout()
plt.show()