forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimeseries.py
158 lines (117 loc) · 4.92 KB
/
timeseries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from vbench.api import Benchmark
from datetime import datetime
common_setup = """from pandas_vb_common import *
from datetime import timedelta
N = 100000
try:
rng = date_range('1/1/2000', periods=N, freq='min')
except NameError:
rng = DateRange('1/1/2000', periods=N, offset=datetools.Minute())
def date_range(start=None, end=None, periods=None, freq=None):
return DateRange(start, end, periods=periods, offset=freq)
if hasattr(Series, 'convert'):
Series.resample = Series.convert
ts = Series(np.random.randn(N), index=rng)
"""
#----------------------------------------------------------------------
# Lookup value in large time series, hash map population
setup = common_setup + """
rng = date_range('1/1/2000', periods=1500000, freq='s')
ts = Series(1, index=rng)
"""
stmt = "ts[ts.index[len(ts) // 2]]; ts.index._cleanup()"
timeseries_large_lookup_value = Benchmark(stmt, setup,
start_date=datetime(2012, 1, 1))
#----------------------------------------------------------------------
# Test slice minutely series
timeseries_slice_minutely = Benchmark('ts[:10000]', common_setup)
#----------------------------------------------------------------------
# Test conversion
setup = common_setup + """
"""
timeseries_1min_5min_ohlc = Benchmark("ts[:10000].resample('5min', how='ohlc')",
common_setup,
start_date=datetime(2012, 5, 1))
timeseries_1min_5min_mean = Benchmark("ts[:10000].resample('5min', how='mean')",
common_setup,
start_date=datetime(2012, 5, 1))
#----------------------------------------------------------------------
# Irregular alignment
setup = common_setup + """
lindex = np.random.permutation(N)[:N // 2]
rindex = np.random.permutation(N)[:N // 2]
left = Series(ts.values.take(lindex), index=ts.index.take(lindex))
right = Series(ts.values.take(rindex), index=ts.index.take(rindex))
"""
timeseries_add_irregular = Benchmark('left + right', setup)
#----------------------------------------------------------------------
# Sort large irregular time series
setup = common_setup + """
N = 100000
rng = date_range('1/1/2000', periods=N, freq='s')
rng = rng.take(np.random.permutation(N))
ts = Series(np.random.randn(N), index=rng)
"""
timeseries_sort_index = Benchmark('ts.sort_index()', setup,
start_date=datetime(2012, 4, 1))
#----------------------------------------------------------------------
# Shifting, add offset
setup = common_setup + """
rng = date_range('1/1/2000', periods=10000, freq='T')
"""
datetimeindex_add_offset = Benchmark('rng + timedelta(minutes=2)', setup,
start_date=datetime(2012, 4, 1))
setup = common_setup + """
N = 10000
rng = date_range('1/1/1990', periods=N, freq='53s')
ts = Series(np.random.randn(N), index=rng)
dates = date_range('1/1/1990', periods=N * 10, freq='5s')
"""
timeseries_asof_single = Benchmark('ts.asof(dates[0])', setup,
start_date=datetime(2012, 4, 27))
timeseries_asof = Benchmark('ts.asof(dates)', setup,
start_date=datetime(2012, 4, 27))
setup = setup + 'ts[250:5000] = np.nan'
timeseries_asof_nan = Benchmark('ts.asof(dates)', setup,
start_date=datetime(2012, 4, 27))
#----------------------------------------------------------------------
# Time zone stuff
setup = common_setup + """
rng = date_range('1/1/2000', '3/1/2000', tz='US/Eastern')
"""
timeseries_timestamp_tzinfo_cons = \
Benchmark('rng[0]', setup, start_date=datetime(2012, 5, 5))
#----------------------------------------------------------------------
# Resampling period
setup = common_setup + """
rng = period_range('1/1/2000', '1/1/2001', freq='T')
ts = Series(np.random.randn(len(rng)), index=rng)
"""
timeseries_period_downsample_mean = \
Benchmark("ts.resample('D', how='mean')", setup,
start_date=datetime(2012, 4, 25))
setup = common_setup + """
rng = date_range('1/1/2000', '1/1/2001', freq='T')
ts = Series(np.random.randn(len(rng)), index=rng)
"""
timeseries_timestamp_downsample_mean = \
Benchmark("ts.resample('D', how='mean')", setup,
start_date=datetime(2012, 4, 25))
#----------------------------------------------------------------------
# to_datetime
setup = common_setup + """
rng = date_range('1/1/2000', periods=20000, freq='h')
strings = [x.strftime('%Y-%m-%d %H:%M:%S') for x in rng]
"""
timeseries_to_datetime_iso8601 = \
Benchmark('to_datetime(strings)', setup,
start_date=datetime(2012, 7, 11))
# ---- infer_freq
# infer_freq
setup = common_setup + """
from pandas.tseries.frequencies import infer_freq
rng = date_range('1/1/1700', freq='D', periods=100000)
a = rng[:50000].append(rng[50002:])
"""
timeseries_infer_freq = \
Benchmark('infer_freq(a)', setup, start_date=datetime(2012, 7, 1))