forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_unique.py
264 lines (208 loc) · 7.32 KB
/
bench_unique.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from pandas import *
from pandas.util.testing import rands
import pandas._tseries as lib
import numpy as np
import matplotlib.pyplot as plt
N = 50000
K = 10000
groups = np.array([rands(10) for _ in xrange(K)], dtype='O')
groups2 = np.array([rands(10) for _ in xrange(K)], dtype='O')
labels = np.tile(groups, N // K)
labels2 = np.tile(groups2, N // K)
data = np.random.randn(N)
def timeit(f, niter):
import gc, time
gc.disable()
start = time.time()
for _ in xrange(niter):
f()
elapsed = (time.time() - start) / niter
gc.enable()
return elapsed
def algo1():
unique_labels = np.unique(labels)
result = np.empty(len(unique_labels))
for i, label in enumerate(unique_labels):
result[i] = data[labels == label].sum()
def algo2():
unique_labels = np.unique(labels)
indices = lib.groupby_indices(labels)
result = np.empty(len(unique_labels))
for i, label in enumerate(unique_labels):
result[i] = data.take(indices[label]).sum()
def algo3_nosort():
rizer = lib.DictFactorizer()
labs, counts = rizer.factorize(labels, sort=False)
k = len(rizer.uniques)
out = np.empty(k)
lib.group_add(out, counts, data, labs)
def algo3_sort():
rizer = lib.DictFactorizer()
labs, counts = rizer.factorize(labels, sort=True)
k = len(rizer.uniques)
out = np.empty(k)
lib.group_add(out, counts, data, labs)
import numpy as np
import random
# dict to hold results
counts = {}
# a hack to generate random key, value pairs.
# 5k keys, 100k values
x = np.tile(np.arange(5000, dtype='O'), 20)
random.shuffle(x)
xarr = x
x = [int(y) for y in x]
data = np.random.uniform(0, 1, 100000)
def f():
from itertools import izip
# groupby sum
for k, v in izip(x, data):
try:
counts[k] += v
except KeyError:
counts[k] = v
def f2():
rizer = lib.DictFactorizer()
labs, counts = rizer.factorize(xarr, sort=False)
k = len(rizer.uniques)
out = np.empty(k)
lib.group_add(out, counts, data, labs)
def algo4():
rizer = lib.DictFactorizer()
labs1, _ = rizer.factorize(labels, sort=False)
k1 = len(rizer.uniques)
rizer = lib.DictFactorizer()
labs2, _ = rizer.factorize(labels2, sort=False)
k2 = len(rizer.uniques)
group_id = labs1 * k2 + labs2
max_group = k1 * k2
if max_group > 1e6:
rizer = lib.Int64Factorizer(len(group_id))
group_id, _ = rizer.factorize(group_id.astype('i8'), sort=True)
max_group = len(rizer.uniques)
out = np.empty(max_group)
counts = np.zeros(max_group, dtype='i4')
lib.group_add(out, counts, data, group_id)
# cumtime percall filename:lineno(function)
# 0.592 0.592 <string>:1(<module>)
# 0.584 0.006 groupby_ex.py:37(algo3_nosort)
# 0.535 0.005 {method 'factorize' of DictFactorizer' objects}
# 0.047 0.000 {pandas._tseries.group_add}
# 0.002 0.000 numeric.py:65(zeros_like)
# 0.001 0.000 {method 'fill' of 'numpy.ndarray' objects}
# 0.000 0.000 {numpy.core.multiarray.empty_like}
# 0.000 0.000 {numpy.core.multiarray.empty}
# UNIQUE timings
# N = 10000000
# K = 500000
# groups = np.array([rands(10) for _ in xrange(K)], dtype='O')
# labels = np.tile(groups, N // K)
data = np.random.randn(N)
data = np.random.randn(N)
Ks = [100, 1000, 5000, 10000, 25000, 50000, 100000]
# Ks = [500000, 1000000, 2500000, 5000000, 10000000]
import psutil
import os
import gc
pid = os.getpid()
proc = psutil.Process(pid)
def dict_unique(values, expected_K, sort=False, memory=False):
if memory:
gc.collect()
before_mem = proc.get_memory_info().rss
rizer = lib.DictFactorizer()
result = rizer.unique_int64(values)
if memory:
result = proc.get_memory_info().rss - before_mem
return result
if sort:
result.sort()
assert(len(result) == expected_K)
return result
def khash_unique(values, expected_K, size_hint=False, sort=False,
memory=False):
if memory:
gc.collect()
before_mem = proc.get_memory_info().rss
if size_hint:
rizer = lib.Factorizer(len(values))
else:
rizer = lib.Factorizer(100)
result = []
result = rizer.unique(values)
if memory:
result = proc.get_memory_info().rss - before_mem
return result
if sort:
result.sort()
assert(len(result) == expected_K)
def khash_unique_str(values, expected_K, size_hint=False, sort=False,
memory=False):
if memory:
gc.collect()
before_mem = proc.get_memory_info().rss
if size_hint:
rizer = lib.StringHashTable(len(values))
else:
rizer = lib.StringHashTable(100)
result = []
result = rizer.unique(values)
if memory:
result = proc.get_memory_info().rss - before_mem
return result
if sort:
result.sort()
assert(len(result) == expected_K)
def khash_unique_int64(values, expected_K, size_hint=False, sort=False):
if size_hint:
rizer = lib.Int64HashTable(len(values))
else:
rizer = lib.Int64HashTable(100)
result = []
result = rizer.unique(values)
if sort:
result.sort()
assert(len(result) == expected_K)
def hash_bench():
numpy = []
dict_based = []
dict_based_sort = []
khash_hint = []
khash_nohint = []
for K in Ks:
print K
# groups = np.array([rands(10) for _ in xrange(K)])
# labels = np.tile(groups, N // K).astype('O')
groups = np.random.randint(0, 100000000000L, size=K)
labels = np.tile(groups, N // K)
dict_based.append(timeit(lambda: dict_unique(labels, K), 20))
khash_nohint.append(timeit(lambda: khash_unique_int64(labels, K), 20))
khash_hint.append(timeit(lambda: khash_unique_int64(labels, K,
size_hint=True), 20))
# memory, hard to get
# dict_based.append(np.mean([dict_unique(labels, K, memory=True)
# for _ in xrange(10)]))
# khash_nohint.append(np.mean([khash_unique(labels, K, memory=True)
# for _ in xrange(10)]))
# khash_hint.append(np.mean([khash_unique(labels, K, size_hint=True, memory=True)
# for _ in xrange(10)]))
# dict_based_sort.append(timeit(lambda: dict_unique(labels, K,
# sort=True), 10))
# numpy.append(timeit(lambda: np.unique(labels), 10))
# unique_timings = DataFrame({'numpy.unique' : numpy,
# 'dict, no sort' : dict_based,
# 'dict, sort' : dict_based_sort},
# columns=['dict, no sort',
# 'dict, sort', 'numpy.unique'],
# index=Ks)
unique_timings = DataFrame({'dict' : dict_based,
'khash, preallocate' : khash_hint,
'khash' : khash_nohint},
columns=['khash, preallocate', 'khash', 'dict'],
index=Ks)
unique_timings.plot(kind='bar', legend=False)
plt.legend(loc='best')
plt.title('Unique on 100,000 values, int64')
plt.xlabel('Number of unique labels')
plt.ylabel('Mean execution time')
plt.show()