-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathexample_022_minimum_spanning_tree_Kruskal_algo.py
83 lines (61 loc) · 1.86 KB
/
example_022_minimum_spanning_tree_Kruskal_algo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
class Graph:
# A simple representation of a weighted graph
def __init__(self, no_vertices):
self.no_vertices = no_vertices
self.edges = []
def add_edge(self, u, v, w):
self.edges.append([u, v, w])
# A Search function
def find(self, parent, i):
if parent[i] == i:
return i
return self.find(parent, parent[i])
# A Simple union Function
def apply_union(self, parent, rank, x, y):
xroot = self.find(parent, x)
yroot = self.find(parent, y)
if rank[xroot] < rank[yroot]:
parent[xroot] = yroot
elif rank[xroot] > rank[yroot]:
parent[yroot] = xroot
else:
parent[yroot] = xroot
rank[xroot] += 1
# Applying Kruskal algorithm
def kruskal_algo(self):
result = []
i, e = 0, 0
self.edges = sorted(self.edges, key=lambda item: item[2])
parent = []
rank = []
for node in range(self.no_vertices):
parent.append(node)
rank.append(0)
while e < self.no_vertices - 1:
u, v, w = self.edges[i]
i = i + 1
x = self.find(parent, u)
y = self.find(parent, v)
if x != y:
e = e + 1
result.append([u, v, w])
self.apply_union(parent, rank, x, y)
for u, v, weight in result:
print("%d - %d: %d" % (u, v, weight))
return result
def main():
# create the Graph object
g1 = Graph(7)
g1.add_edge(0, 1, 30)
g1.add_edge(0, 6, 10)
g1.add_edge(1, 4, 13)
g1.add_edge(1, 2, 15)
g1.add_edge(2, 3, 12)
g1.add_edge(3, 4, 16)
g1.add_edge(3, 5, 20)
g1.add_edge(4, 5, 21)
g1.add_edge(5, 6, 22)
print(g1.edges)
g1.kruskal_algo()
if __name__ == "__main__":
main()