-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathexample_011.1_knapsack.py
123 lines (89 loc) · 2.97 KB
/
example_011.1_knapsack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# A naive recursive implementation of 0-1 Knapsack Problem
# A Brute Force Approach
def recursive_knapsack(values, weights, n, cap_weight):
# Base Case
if n == 0 or cap_weight == 0 :
return 0
if (weights[n-1] > cap_weight):
return recursive_knapsack(values, weights, n-1, cap_weight)
else:
return max(values[n-1] + recursive_knapsack(values, weights, n-1, cap_weight-weights[n-1]), \
recursive_knapsack(values, weights, n-1, cap_weight))
#TODO for students. Develop the above recursive approach with memoziation technique.
# Here is the DP solution Bottom-UP, Iterative using DP table
def knapsack(values, weights, n, cap_weight):
dp = [[0 for x in range(cap_weight+1)] for x in range(n+1)]
for i in range(n+1):
for w in range(cap_weight+1):
if(i == 0 or w ==0):
dp[i][w]=0
elif(weights[i-1]<= w):
dp[i][w] = max(dp[i-1][w], values[i-1] + dp[i-1][w - weights[i-1]])
else:
dp[i][w] = dp[i-1][w]
return dp, dp[n][cap_weight]
# Here is the DP solution Bottom-UP, Iterative using DP table
def knapsack_with_keep(values, weights, n, cap_weight):
dp = [[0 for x in range(cap_weight+1)] for x in range(n+1)]
keep = [[0 for x in range(cap_weight+1)] for x in range(n+1)]
for i in range(n+1):
for w in range(cap_weight+1):
if(i == 0 or w ==0):
dp[i][w]=0
elif(weights[i-1]<= w):
dp[i][w] = max(dp[i-1][w], values[i-1] + dp[i-1][w - weights[i-1]])
keep[i][w] = 1
else:
dp[i][w] = dp[i-1][w]
keep[i][w] = 0
# # Now we print out which items are selected
# k = cap_weight
# for i in range(n+1, 0, -1):
# if keep[i][k] == 1:
# print(i)
# k = k - weights[i]
# Now we print out which items are selected
#
opt=dp[n][cap_weight]
w = cap_weight
for i in range(n, 0, -1):
if opt <= 0:
break
if opt == dp[i][w]:
continue
else:
# This item is included.
print((i, weights[i], values[i]))
# Since this weight is included
# its value is deducted
opt = opt - values[i ]
w = w - weights[i]
return dp, dp[n][cap_weight]
# A print function to print 2D Matrix
def print2D(a):
for i in range(len(a)):
for j in range(len(a[i])):
print(a[i][j], end=',')
print()
#######################
### Main Function #####
#######################
def main():
v = [10, 40, 30, 50]
w = [5, 4, 6, 3]
print(v)
print(w)
n=len(v)
weight=8
value = recursive_knapsack(v, w , n, weight)
print("Recursive Implementation, Maximum Value: ", value)
print("\n\n DP Solution")
value, optimal = knapsack(v, w , n, weight)
print2D(value)
print("DP Implementation, Maximum Value: ", optimal)
print("\n\n DP Solution with Keep")
value, optimal = knapsack_with_keep(v, w , n, weight)
print("DP Implementation, Maximum Value: ", optimal)
# Call the main function.
if __name__ == "__main__":
main()