-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathexample_009_binary_search_tree.py
215 lines (175 loc) · 5.84 KB
/
example_009_binary_search_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
class Node():
'''This class represents a single Node.'''
def __init__(self, key):
self.key = key
self.lChild = None
self.rChild = None
def print_node(self, level=0):
if self.rChild != None:
self.rChild.print_node(level + 1)
print(' ' * 4 * level + '->', self.key)
if self.lChild != None:
self.lChild.print_node(level + 1)
# In-order traversal - left, center, right
def inOrder(self, aNode):
if (aNode != None):
aNode.inOrder(aNode.lChild)
print(aNode.key, end=" ")
aNode.inOrder(aNode.rChild)
# Pre-order traversal - center, left, right
def preOrder(self, aNode):
if (aNode != None):
print(aNode.key, end=" ")
aNode.preOrder(aNode.lChild)
aNode.preOrder(aNode.rChild)
# Post-order traversal - left, right, center
def postOrder(self, aNode):
if (aNode != None):
aNode.postOrder(aNode.lChild)
aNode.postOrder(aNode.rChild)
print(aNode.key, end=" ")
class BST():
'''This class represents a Binary Search Tree.'''
def __init__(self):
self.root = None
def print(self, level):
self.root.print_node(level)
# Search for a node with the key
def search(self, key):
current = self.root
while ((current != None) and (current.key != key)):
if (key < current.key):
current = current.lChild
else:
current = current.rChild
return current
# Insert a node in the tree
def insert(self, val):
newNode = Node(val)
if (self.root == None):
self.root = newNode
else:
current = self.root
parent = self.root
# seearch
while (current != None):
parent = current
if (val < current.key):
current = current.lChild
else:
current = current.rChild
# insert
if (val < parent.key):
parent.lChild = newNode
else:
parent.rChild = newNode
# Find the node with the smallest value
def minimum(self):
current = self.root
parent = current
while (current != None):
parent = current
current = current.lChild
return parent
# Find the node with the largest value
def maximum(self):
current = self.root
parent = current
while (current != None):
parent = current
current = current.rChild
return parent
# Delete a node with a given key
def delete(self, key):
deleteNode = self.root
parent = self.root
isLeft = False
# If empty tree
if (deleteNode == None):
return False
# Find the delete node
while ((deleteNode != None) and (deleteNode.key != key)):
parent = deleteNode
if (key < deleteNode.key):
deleteNode = deleteNode.lChild
isLeft = True
else:
deleteNode = deleteNode.rChild
isLeft = False
# If node not found
if (deleteNode == None):
return False
# Delete node is a leaf node
if ((deleteNode.lChild == None) and (deleteNode.rChild == None)):
if (deleteNode == self.root):
self.root = None
elif (isLeft):
parent.lChild = None
else:
parent.rChild = None
# Delete node is a node with only left child
elif (deleteNode.rChild == None):
if (deleteNode == self.root):
self.root = deleteNode.lChild
elif (isLeft):
parent.lChild = deleteNode.lChild
else:
parent.rChild = deleteNode.lChild
# Delete node is a node with only right child
elif (deleteNode.lChild == None):
if (deleteNode == self.root):
self.root = deleteNode.rChild
elif (isLeft):
parent.lChild = deleteNode.rChild
else:
parent.rChild = deleteNode.rChild
# Delete node is a node with both left and right child
else:
# Find delete node's successor and successor's parent nodes
successor = deleteNode.rChild
successorParent = deleteNode
while (successor.lChild != None):
successorParent = successor
successor = successor.lChild
# Successor node right child of delete node
if (deleteNode == self.root):
self.root = successor
elif (isLeft):
parent.lChild = successor
else:
parent.rChild = successor
# Connect delete node's left child to be successor's left child
successor.lChild = deleteNode.lChild
# Successor node left descendant of delete node
if (successor != deleteNode.rChild):
successorParent.lChild = successor.rChild
successor.rChild = deleteNode.rChild
return True
###############################
# #
# Example run of a BST run #
# #
###############################
def main():
bst = BST()
bst.insert(10)
bst.insert(40)
bst.insert(5)
bst.insert(15)
bst.insert(22)
bst.insert(4)
bst.print(2)
print("##############")
bst.delete(10)
bst.print(2)
print("##############")
print("Print In-Order")
bst.root.inOrder(bst.root)
print()
print("Print Pre-Order")
bst.root.preOrder(bst.root)
print()
print("Print Post-Order")
bst.root.postOrder(bst.root)
if __name__ == '__main__':
main()