-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathexample_009_2_graph_with_adj_matrix.py
302 lines (223 loc) · 7.14 KB
/
example_009_2_graph_with_adj_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""
Run this python script like this
python3 example_009_2_graph_with_adj_matrix.py < graph.txt
"""
import sys
###########################################
class Stack():
"""Stack implementation"""
def __init__ (self):
self.stack = []
# add an item to the top of the stack
def push(self, item):
self.stack.append (item)
# remove an item from the top of the stack
def pop(self):
return self.stack.pop()
# check the item on the top of the stack
def peek(self):
return self.stack[-1]
# check if the stack if empty
def is_empty(self):
return (len(self.stack) == 0)
# return the number of elements in the stack
def size (self):
return (len(self.stack))
###########################################
class Queue():
"""Queue Implementation"""
def __init__ (self):
self.queue = []
# add an item to the end of the queue
def enqueue(self, item):
self.queue.append(item)
# remove an item from the beginning of the queue
def dequeue(self):
return (self.queue.pop(0))
# check if the queue is empty
def is_empty(self):
return (len (self.queue) == 0)
# return the size of the queue
def size(self):
return (len (self.queue))
###########################################
class Vertex():
"""A single vertex of a Graph."""
def __init__ (self, label):
self.label = label
self.visited = False
# determine if a vertex was visited
def was_visited(self):
return self.visited
# determine the label of the vertex
def get_label(self):
return self.label
# string representation of the vertex
def __str__(self):
return str(self.label)
###########################################
class Graph():
"""A Graph Class G(V, E)"""
def __init__(self):
"""A graph has a list of vertices and a adjacency matrix"""
self.vertices = []
self.adj_mat = []
def has_vertex(self, label):
"""Check if a vertex is already in the graph"""
for i in range (len(self.vertices)):
if label == (self.vertices[i]).get_label():
return True
return False
def get_index(self, label):
"""Given the label get the index of a vertex"""
for i in range(len(self.vertices)):
if label == (self.vertices[i]).get_label():
return i
return -1
def add_vertex(self, label):
"""Add a Vertex with a given label to the graph"""
if self.has_vertex(label):
return
# add vertex to the list of vertices
self.vertices.append(Vertex(label))
# add a new column in the adjacency matrix
nVert = len(self.vertices)
for i in range(nVert - 1):
(self.adj_mat[i]).append(0)
# add a new row for the new vertex
new_row = []
for i in range(nVert):
new_row.append(0)
self.adj_mat.append(new_row)
def add_directed_edge(self, start, finish, weight = 1):
"""Add weighted directed edge to graph"""
self.adj_mat[start][finish] = weight
def add_undirected_edge(self, start, finish, weight = 1):
"""Add weighted undirected edge to graph"""
self.adj_mat[start][finish] = weight
self.adj_mat[finish][start] = weight
def get_adj_unvisited_vertex(self, v):
"""Return an unvisited vertex adjacent to vertex v (index)"""
nVert = len (self.vertices)
for i in range (nVert):
if (self.adj_mat[v][i] > 0) and (not (self.vertices[i]).was_visited()):
return i
return -1
def __str__(self):
'''
A simple string representation of the graph in Adjancy Matrix.
'''
tmp = "\nVerticies are: \n"
for vertex in self.vertices:
tmp += str(vertex) + str("\n")
tmp += "Adjancy Matrix is: \n"
for i in range(len(self.adj_mat)):
tmp +="\n"
tmp += str(self.adj_mat[i])
tmp += "\n"
return tmp
###########################################
def dfs(self, v):
'''
Do a Depth First Search in a given Graph.
'''
# create the Stack
the_stack = Stack()
# mark the vertex v as visited and push it on the Stack
(self.vertices[v]).visited = True
print(self.vertices[v])
the_stack.push(v)
time_counter = 1
finish_times = dict()
finish_times[v] = time_counter
# visit all the other vertices according to depth
while(not the_stack.is_empty()):
# get an adjacent unvisited vertex
u = self.get_adj_unvisited_vertex(the_stack.peek())
time_counter += 1
if u == -1:
u = the_stack.pop()
time_counter += 1
else:
(self.vertices[u]).visited = True
print(self.vertices[u]) # output this vertext.
# Add the finishing time for this vertex.
finish_times[u] = time_counter
the_stack.push(u)
# the stack is empty, let us rest the flags
for i in range(len(self.vertices)):
(self.vertices[i]).visited = False
print(finish_times)
###########################################
def bfs(self, start):
'''
Do the breadth first search in a graph
'''
level_counter = 1
# create the Queue to do FIFO
frontier = Queue()
level = dict()
# add the start vertext into the queue
frontier.enqueue(start)
# set the level of start point
level[start] = 0
# While frontier is not empty open level by level.
while not frontier.is_empty():
s = frontier.dequeue()
# mark the vertex v as visited and push it on the Stack
(self.vertices[s]).visited = True
print(self.vertices[s])
next_nodes = [i for i, e in enumerate(self.adj_mat[s]) if e != 0]
for vertex in next_nodes:
if not self.vertices[vertex].visited:
(self.vertices[vertex]).visited = True
frontier.enqueue(vertex)
level[vertex]=level_counter
level_counter += 1
print(level)
def main():
"""A main function to create a graph of cities."""
# create the Graph object
cities = Graph()
# read the number of vertices
line = sys.stdin.readline()
line = line.strip()
num_vertices = int(line)
print("Number of vertices is: ", num_vertices)
# read the vertices to the list of Vertices
for i in range (num_vertices):
line = sys.stdin.readline()
city = line.strip()
cities.add_vertex(city)
print("added vertex: ", city)
# read the number of edges
line = sys.stdin.readline()
line = line.strip()
num_edges = int (line)
print("Number of edges is: ", num_edges)
print(cities)
# # read each edge and place it in the adjacency matrix
for i in range(num_edges):
line = sys.stdin.readline()
edge = line.strip()
edge = edge.split()
start = int(edge[0])
finish = int(edge[1])
weight = int(edge[2])
print("Create an edge from " + str(start) + " to " + str(finish) + " with weight of " + str(weight))
cities.add_directed_edge(start, finish, weight)
print(cities)
# read the starting vertex for dfs and bfs
line = sys.stdin.readline()
start_vertex = line.strip()
# get the index of the starting vertex
start_index = cities.get_index (start_vertex)
# do the depth first search
print ("Depth First Search")
cities.dfs(start_index)
print()
print ("Breath First Search")
cities.bfs(start_index)
print()
if __name__ == "__main__":
main()